Skip to main content

Infrared Spectroscopy and Imaging in Stem Cells and Aging Research

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

The effect of aging process on stem cell function is crucial because of their critical role in tissue regeneration and repair. The impact of aging on stem cells needs to be understood clearly for the success of clinical application and obtaining desired therapeutic outcome throughout the novel stem cell based therapies. The existing methods used to monitor and characterize the stem cells have some unwanted effects on the properties of stem cells and these methods also do not provide real-time information about cellular conditions. These challenges enforce the usage of nondestructive, rapid, sensitive, high-quality, label-free, cheep, and innovative chemical monitoring methods. In this context, vibrational spectroscopy provides promising alternative to get new information into the field of stem cell biology for chemical analysis, quantification, and imaging of stem cells. Infrared spectroscopy and imaging coupled with chemometric methods can be used as novel and complimentary methods to obtain new insight into stem cell studies for future therapeutic and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed AS, Sheng MH, Wasnik S et al (2017) Effect of aging on stem cells. World J Exp Med 7(1):1–10

    Article  Google Scholar 

  2. Buom-Yong R, Kyle EO, Jon MO et al (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24(6):1505–1511

    Article  Google Scholar 

  3. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5(1):91–116

    Article  CAS  Google Scholar 

  4. Stenderup K, Justesen J, Claudsen C (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  Google Scholar 

  5. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    Article  CAS  Google Scholar 

  6. Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659–667

    Article  CAS  Google Scholar 

  7. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  Google Scholar 

  8. Greco SJ, Rameshwar P (2008) Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2:699–705

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Drummond-Barbosa D (2008) Stem cells, their niches and the systemic environment: an aging network. Genetics 180:1787–1797

    Article  Google Scholar 

  10. Stolzing A, Jones E, McGonagle D et al (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    Article  CAS  Google Scholar 

  11. Becerra J, Santos-Ruiz L, Andrades JA et al (2011) The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev 7:248–255

    Article  Google Scholar 

  12. Mitsiadis TA, Barran O, Rochat A et al (2007) Stem cell niches in mammals. Exp Cell Res 313:3377–3385

    Article  CAS  Google Scholar 

  13. Wagner W, Roderburg C, Wein F et al (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 25:2638–2647

    Article  CAS  Google Scholar 

  14. Purton LE, Scadden DT (2008) The hematopoietic stem cell niche. In: Silberstein L (ed) Stem Book, The Stem Cell Research Community, Massachusetts

    Google Scholar 

  15. Aksoy C, Aerts-Kaya F, Kuşkonmaz BB et al (2014) Structural investigation of donor age effect on human bone marrow mesenchymal stem cells: FTIR spectroscopy and imaging. Age 36:9691

    Article  Google Scholar 

  16. Aksoy C, Severcan F (2012) Role of vibrational spectroscopy in stem cell research. Spectrosc Intern J 27(3):167–184

    Article  CAS  Google Scholar 

  17. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta 1758:858–867

    Article  CAS  Google Scholar 

  18. Cakmak G, Miller LM, Severcan F et al (2012) Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study. Arch Biochem Biophys 520(2):67–73

    Article  CAS  Google Scholar 

  19. Bechtel HA, Martin MC, May TE, Lerch P (2009) Improved spatial resolution for reflection mode infrared microscopy. Rev Sci Instrum 80:126106

    Article  Google Scholar 

  20. Cakmak G, Zorlu F, Severcan F et al (2011) Screening of protective effect of amifostine on radiation-induced structural and functional variations in rat liver microsomal membranes by FT-IR spectroscopy. Anal Chem 83:2438–2444

    Article  CAS  Google Scholar 

  21. Matthaus C, Boydston-White S, Miljkovic M et al (2006) Raman and infrared microspectral imaging of mitotic cells. Appl Spectrosc 60:1–8

    Article  CAS  Google Scholar 

  22. Dukor R (2002) Handbook of vibrational spectroscopy. Wiley, New York

    Google Scholar 

  23. Erukhimovitch V, Talyshinsky M, Souprun Y et al (2005) FTIR microscopy detection of cells infected with viruses. Methods Mol Biol 292:161–172

    PubMed  Google Scholar 

  24. Krafft C, Salzer R, Seitz S et al (2007) Differentiation of individual human mesenchymal stem cells probed by FTIR microscopic imaging. Analyst 132:647–653

    Article  CAS  Google Scholar 

  25. Diem M, Boydston-White S, Chiriboga L (1999) Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl Spectrosc 53:148–161

    Article  Google Scholar 

  26. Chan JW, Lieu DK (2009) Label-free biochemical characterization of stem cells using vibrational spectroscopy. J Biophotonics 2:656–668

    Article  CAS  Google Scholar 

  27. Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35(3):168–184

    Article  Google Scholar 

  28. Aksoy C, Guliyev A, Kilic E et al (2012) Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analyses with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy study as a novel method. Stem Cells Dev 21(11):2000–2011

    Article  CAS  Google Scholar 

  29. Aksoy C, Uckan D, Severcan F (2012) FTIR spectroscopic imaging of mesenchymal stem cells in beta thalassemia disease state. Biomed Spectr Imaging 1:67–78

    CAS  Google Scholar 

  30. Horwitz EM, Le Blanc K, Mr D et al (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7:393–395

    Article  CAS  Google Scholar 

  31. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  32. Ward JJH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  33. Severcan F, Bozkurt O, Gurbanov R, Gorgulu G (2010) FT-IR spectroscopy in diagnosis of diabetes in rat animal model. J Biophotonics 3:621–631

    Article  CAS  Google Scholar 

  34. Aksoy C (2012) Characterization of stem cells by vibrational spectroscopy. In: Severcan F, Haris PI (eds) Application of vibrational spectroscopy in diagnosis and screening, vol 6. IOS Press, Amsterdam

    Google Scholar 

  35. Romeo MJ, Mohlenhoff B, Diem M (2006) Infrared micro-spectroscopy of human cells: causes for the spectral variance of oral mucosa (buccal) cells. Vib Spectr 42:9–14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Severcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aksoy, C., Severcan, F. (2018). Infrared Spectroscopy and Imaging in Stem Cells and Aging Research. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_119

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_119

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics