Skip to main content

Integrative Analysis of Proteomics Data to Obtain Clinically Relevant Markers

Part of the Methods in Molecular Biology book series (MIMB,volume 1788)

Abstract

The analysis of proteomics data can be significantly challenging. Beyond the technical challenges of accurately identifying and quantifying peptides, identifying the most biologically coherent set of biomarkers can be a particularly daunting step. In this chapter, we will review a series of methods implemented in the software AltAnalyze that can be used to normalize proteomics peptide counts, identify a minimal set of the most distinguishing morbidity-associated biomarkers, and connect up these results to known pathways and interacting protein and regulatory networks. Here, we will apply this workflow to two examples that highlight different benefits of an integrated analysis workflow: (1) urine proteomics samples from patients with distinct kidney transplantation morbidities and (2) sudden infant death syndrome. By the end of this chapter, the reader should be able to apply a similar workflow to their own datasets to identify biologically significant protein markers and relevant networks.

Keywords

  • Bioinformatics
  • Biomarker
  • Data analysis
  • Proteomics
  • Regulatory networks

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/7651_2017_94
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7854-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18(1):83. https://doi.org/10.1186/s13059-017-1215-1. PubMed PMID: 28476144; PMCID: PMC5418815

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yan J, Risacher SL, Shen L, Saykin AJ (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. https://doi.org/10.1093/bib/bbx066. PubMed PMID: 28679163

  3. Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31(12):2003–2011. https://doi.org/10.1093/ndt/gfv364. PubMed PMID: 26487673

    CrossRef  PubMed  Google Scholar 

  4. Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND (2012) Molecular signatures from omics data: from chaos to consensus. Biotechnol J 7(8):946–957. https://doi.org/10.1002/biot.201100305. PubMed PMID: 22528809; PMCID: PMC3418428

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  5. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102. PubMed PMID: 16199517; PMCID: PMC1239896

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  6. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247. PubMed PMID: 22955616; PMCID: PMC3439153

    CrossRef  CAS  Google Scholar 

  7. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385. PubMed PMID: 18772890; PMCID: PMC2671642

    CrossRef  CAS  Google Scholar 

  8. Kohler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Ayme S, Baynam G, Bello SM, Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, Dawkins HJ, DeMare LE, Devereau AD, de Vries BB, Firth HV, Freson K, Greene D, Hamosh A, Helbig I, Hum C, Jahn JA, James R, Krause R, SJ FL, Lochmuller H, Lyon GJ, Ogishima S, Olry A, Ouwehand WH, Pontikos N, Rath A, Schaefer F, Scott RH, Segal M, Sergouniotis PI, Sever R, Smith CL, Straub V, Thompson R, Turner C, Turro E, Veltman MW, Vulliamy T, Yu J, von Ziegenweidt J, Zankl A, Zuchner S, Zemojtel T, Jacobsen JO, Groza T, Smedley D, Mungall CJ, Haendel M, Robinson PN (2017) The human phenotype ontology in 2017. Nucleic Acids Res 45(D1):D865–DD76. https://doi.org/10.1093/nar/gkw1039. PubMed PMID: 27899602; PMCID: PMC5210535

    CrossRef  PubMed  CAS  Google Scholar 

  9. Schriml LM, Mitraka E (2015) The disease ontology: fostering interoperability between biological and clinical human disease-related data. Mamm Genome 26(9–10):584–589. https://doi.org/10.1007/s00335-015-9576-9. PubMed PMID: 26093607; PMCID: PMC4602048

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39(Database issue):D685–D690. https://doi.org/10.1093/nar/gkq1039. PubMed PMID: 21071392; PMCID: PMC3013659

    CrossRef  PubMed  CAS  Google Scholar 

  11. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6(7):e184. https://doi.org/10.1371/journal.pbio.0060184. PubMed PMID: 18651794; PMCID: PMC2475545

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556. PubMed PMID: 10802651; PMCID: PMC3037419

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ogata H, Goto S, Fujibuchi W, Kanehisa M (1998) Computation with the KEGG pathway database. Biosystems 47(1–2):119–128. PubMed PMID: 9715755

    CrossRef  CAS  PubMed  Google Scholar 

  14. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Gruning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343. PubMed PMID: 27137889; PMCID: PMC4987906

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Emig D, Salomonis N, Baumbach J, Lengauer T, Conklin BR, Albrecht M (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res 38(Web Server issue):W755–W762. https://doi.org/10.1093/nar/gkq405. PubMed PMID: 20513647; PMCID: PMC2896198

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kuehn H, Liberzon A, Reich M, Mesirov JP (2008) Using GenePattern for gene expression analysis. Curr Protoc Bioinformatics. Chapter 7:Unit 7 12. doi: https://doi.org/10.1002/0471250953.bi0712s22. PubMed PMID: 18551415; PMCID: PMC3893799

  17. Gatto L, Christoforou A (2014) Using R and bioconductor for proteomics data analysis. Biochim Biophys Acta 1844(1 Pt A):42–51. https://doi.org/10.1016/j.bbapap.2013.04.032. PubMed PMID: 23692960

    CrossRef  PubMed  CAS  Google Scholar 

  18. McLendon PM, Davis G, Gulick J, Singh SR, Xu N, Salomonis N, Molkentin JD, Robbins J (2017) An unbiased high-throughput screen to identify novel effectors that impact on cardiomyocyte aggregate levels. Circ Res 121(6):604–616. https://doi.org/10.1161/CIRCRESAHA.117.310945. PubMed PMID: 28655832; PMCID: PMC5581213

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  19. Rindler TN, Hinton RB, Salomonis N, Ware SM (2017) Molecular characterization of pediatric restrictive cardiomyopathy from integrative genomics. Sci Rep 7:39276. https://doi.org/10.1038/srep39276. PubMed PMID: 28098235; PMCID: PMC5241776

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  20. Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N, Singh H, Grimes HL (2016) Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537(7622):698–702. https://doi.org/10.1038/nature19348. PubMed PMID: 27580035; PMCID: PMC5161694

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:12060. https://doi.org/10.1038/ncomms12060. PubMed PMID: 27350239; PMCID: PMC4931246

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  22. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10(3):e1003517. https://doi.org/10.1371/journal.pcbi.1003517. PubMed PMID: 24651478; PMCID: PMC3961179

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gan Z, Wang J, Salomonis N, Stowe JC, Haddad GG, McCulloch AD, Altintas I, Zambon AC (2014) MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data. BMC Bioinformatics 15:69. https://doi.org/10.1186/1471-2105-15-69. PubMed PMID: 24621103; PMCID: PMC3975178

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Sigdel TK, Salomonis N, Nicora CD, Ryu S, He J, Dinh V, Orton DJ, Moore RJ, Hsieh SC, Dai H, Thien-Vu M, Xiao W, Smith RD, Qian WJ, Camp DG 2nd, Sarwal MM (2014) The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics. Mol Cell Proteomics 13(2):621–631. https://doi.org/10.1074/mcp.M113.030577. PubMed PMID: 24335474; PMCID: PMC3916658

    CrossRef  PubMed  CAS  Google Scholar 

  25. Zambon AC, Gaj S, Ho I, Hanspers K, Vranizan K, Evelo CT, Conklin BR, Pico AR, Salomonis N (2012) GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics 28(16):2209–2210. https://doi.org/10.1093/bioinformatics/bts366. PubMed PMID: 22743224; PMCID: PMC3413395

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  26. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC (2012) Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Mol Cell Proteomics 11(1):M111 009530. https://doi.org/10.1074/mcp.M111.009530. PubMed PMID: 21976671; PMCID: PMC3270099

    CrossRef  PubMed  CAS  Google Scholar 

  27. Salomonis N (2014) Systems-level perspective of sudden infant death syndrome. Pediatr Res 76(3):220–229. https://doi.org/10.1038/pr.2014.90. PubMed PMID: 24964230; PMCID: PMC4193964

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Bright FM, Byard RW, Vink R, Paterson DS (2017) Medullary serotonin neuron abnormalities in an Australian cohort of sudden infant death syndrome. J Neuropathol Exp Neurol 76(10):864–873. https://doi.org/10.1093/jnen/nlx071. PubMed PMID: 28922849

    CrossRef  PubMed  Google Scholar 

  29. Haynes RL, Frelinger AL 3rd, Giles EK, Goldstein RD, Tran H, Kozakewich HP, Haas EA, Gerrits AJ, Mena OJ, Trachtenberg FL, Paterson DS, Berry GT, Adeli K, Kinney HC, Michelson AD (2017) High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci U S A 114(29):7695–7700. https://doi.org/10.1073/pnas.1617374114. PubMed PMID: 28674018; PMCID: PMC5530643

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  30. MacFarlane PM, Mayer CA, Litvin DG (2016) Microglia modulate brainstem serotonergic expression following neonatal sustained hypoxia exposure: implications for sudden infant death syndrome. J Physiol 594(11):3079–3094. https://doi.org/10.1113/JP271845. PubMed PMID: 26659585; PMCID: PMC4887678

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  31. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC (2010) Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA 303(5):430–437. https://doi.org/10.1001/jama.2010.45. PubMed PMID: 20124538; PMCID: PMC3242415

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bittremieux W, Tabb DL, Impens F, Staes A, Timmerman E, Martens L, Laukens K (2017) Quality control in mass spectrometry-based proteomics. Mass Spectrom Rev. https://doi.org/10.1002/mas.21544. PubMed PMID: 28802010

  33. Bittremieux W, Valkenborg D, Martens L, Laukens K (2017) Computational quality control tools for mass spectrometry proteomics. Proteomics 17(3–4). https://doi.org/10.1002/pmic.201600159. PubMed PMID: 27549080

  34. Tabb DL (2013) Quality assessment for clinical proteomics. Clin Biochem 46(6):411–420. https://doi.org/10.1016/j.clinbiochem.2012.12.003. PubMed PMID: 23246537; PMCID: PMC3602213

    CrossRef  PubMed  CAS  Google Scholar 

  35. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6):882–883. https://doi.org/10.1093/bioinformatics/bts034. PubMed PMID: 22257669; PMCID: PMC3307112

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Salomonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Salomonis, N. (2017). Integrative Analysis of Proteomics Data to Obtain Clinically Relevant Markers. In: Sarwal, M., Sigdel, T. (eds) Tissue Proteomics. Methods in Molecular Biology, vol 1788. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_94

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_94

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7852-6

  • Online ISBN: 978-1-4939-7854-0

  • eBook Packages: Springer Protocols