Advertisement

Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells

  • Javad Alizadeh
  • Shahla Shojaei
  • Adel Sepanjnia
  • Mohammad Hashemi
  • Eftekhar Eftekharpour
  • Saeid Ghavami
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1854)

Abstract

Autophagy is increasingly identified as a central player in many cellular activities from cell proliferation to cell division, migration, and differentiation. However, it is also considered as a double-edged sword in cancer biology which either promotes oncogenesis/invasion or sensitizes the tumor cells to chemotherapy induced apoptosis. Recent investigations have provided direct evidence for regulation of cellular phenotype via autophagy pathway. One of the most important types of phenotype conversion is Epithelial-Mesenchymal-Transition (EMT), resulting in alteration of epithelial cell properties to a more mesenchymal form. In the current chapter, we provide a method which is established and being used in our laboratory for detection of autophagy and EMT in lung epithelial cells and show the involvement of autophagy in modulation of cellular phenotype.

Keywords

Epithelial to mesenchymal transition Phenotype conversion Autophagy Lung cancer 

Notes

Acknowledgement

SG was supported by Health Science Centre Foundation General Operating Grant and University Collaborative Research Program. SS was supported by Health Science Centre Foundation General Operating Grant and University Collaborative Research Program and Mitacs Accelerate Postdoctoral Fellowship. JA was supported by Research Manitoba studentship award.

References

  1. 1.
    Novikoff AB, Beaufay H, De Duve C (1956) Electron microscopy of lysosomerich fractions from rat liver. J Biophys Biochem Cytol 2(4 Suppl):179–184CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125(1):85–93.  https://doi.org/10.1172/JCI73946 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830.  https://doi.org/10.1038/ncb0910-823 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M (2015) Immunologic manifestations of autophagy. J Clin Invest 125(1):75–84.  https://doi.org/10.1172/JCI73945 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24(1):69–79.  https://doi.org/10.1038/cr.2013.161 CrossRefPubMedGoogle Scholar
  6. 6.
    Jiang X, Overholtzer M, Thompson CB (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125(1):47–54.  https://doi.org/10.1172/jci73942 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol 30:611–646.  https://doi.org/10.1146/annurev-immunol-020711-074948 CrossRefPubMedGoogle Scholar
  8. 8.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997.  https://doi.org/10.1038/nm.3232 CrossRefPubMedGoogle Scholar
  9. 9.
    Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16(8):461–472.  https://doi.org/10.1038/nrm4024 CrossRefPubMedGoogle Scholar
  10. 10.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741.  https://doi.org/10.1016/j.cell.2011.10.026 CrossRefGoogle Scholar
  11. 11.
    Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136.  https://doi.org/10.1007/s00018-011-0865-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104.  https://doi.org/10.1038/cr.2013.153 CrossRefPubMedGoogle Scholar
  13. 13.
    Zsiros V, Katz S, Doczi N, Kiss AL (2017) Autophagy is the key process in the re-establishment of the epitheloid phenotype during mesenchymal-epithelial transition (MET). Exp Cell Res 352(2):382–392.  https://doi.org/10.1016/j.yexcr.2017.02.031 CrossRefPubMedGoogle Scholar
  14. 14.
    Doberstein K, Harter PN, Haberkorn U, Bretz NP, Arnold B, Carretero R, Moldenhauer G, Mittelbronn M, Altevogt P (2015) Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. Int J Cancer 136(5):E326–E339.  https://doi.org/10.1002/ijc.29222 CrossRefPubMedGoogle Scholar
  15. 15.
    Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG, Rees RC, Boocock DJ (2017) A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 7:40633.  https://doi.org/10.1038/srep40633 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970.  https://doi.org/10.1016/j.febslet.2012.02.037 CrossRefPubMedGoogle Scholar
  17. 17.
    Massague J (2012) TGF[beta] signalling in context. Nat Rev Mol Cell Biol 13(10):616–630CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890.  https://doi.org/10.1016/j.cell.2009.11.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300.  https://doi.org/10.3322/caac.20073 CrossRefPubMedGoogle Scholar
  20. 20.
    Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21(7).  https://doi.org/10.3390/molecules21070965
  21. 21.
    Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712.  https://doi.org/10.1038/nature02962 CrossRefPubMedGoogle Scholar
  22. 22.
    Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL (2004) Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6(5):603–610.  https://doi.org/10.1593/neo.04241 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115.  https://doi.org/10.1101/gad.276304 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH (2010) Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Res 70(17):6715–6724.  https://doi.org/10.1158/0008-5472.can-10-1377 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xiao D, He J (2010) Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2(3):154–159.  https://doi.org/10.3978/j.issn.2072-1439.2010.02.03.7 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bae GY, Hong SK, Park JR, Kwon OS, Kim KT, Koo J, Oh E, Cha HJ (2016) Chronic TGFbeta stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin beta3-Akt-GSK3beta signaling. Oncotarget 7(18):25366–25376.  10.18632/oncotarget.8295 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eberlein C, Rooney C, Ross SJ, Farren M, Weir HM, Barry ST (2015) E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin [alpha]v[beta]6 and maintained through TGF[beta] signalling. Oncogene 34(6):704–716.  https://doi.org/10.1038/onc.2013.600 CrossRefPubMedGoogle Scholar
  28. 28.
    Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, Brait M, Hoque MO, Ling S, Bedi A, Sidransky D (2014) The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74(14):3995–4005.  https://doi.org/10.1158/0008-5472.can-14-0110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Koeck S, Amann A, Huber JM, Gamerith G, Hilbe W, Zwierzina H (2016) The impact of metformin and salinomycin on transforming growth factor beta-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol Lett 11(4):2946–2952.  https://doi.org/10.3892/ol.2016.4323 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, Xia W, Guo L, Zhang HT (2015) TGF-beta-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer 87(3):249–257.  https://doi.org/10.1016/j.lungcan.2014.12.015 CrossRefPubMedGoogle Scholar
  31. 31.
    Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Z-R L (2015) Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res 75(11):2316–2325.  https://doi.org/10.1158/0008-5472.can-14-3485 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salvo E, Garasa S, Dotor J, Morales X, Peláez R, Altevogt P, Rouzaut A (2014) Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer 13(1):112.  https://doi.org/10.1186/1476-4598-13-112 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rintoul RC, Sethi T (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci 102(4):417CrossRefPubMedGoogle Scholar
  34. 34.
    Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Los MJ, Ghavami S (2017) New frontiers in the treatment of colorectal cancer: autophagy and the unfolded protein response as promising targets. Autophagy 13(5):781–819.  https://doi.org/10.1080/15548627.2017.1290751 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM (2012) Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 11(10):2022–2029.  https://doi.org/10.4161/cc.20424 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sandilands E, Serrels B, McEwan DG, Morton JP, Macagno JP, McLeod K, Stevens C, Brunton VG, Langdon WY, Vidal M, Sansom OJ, Dikic I, Wilkinson S, Frame MC (2011) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 14(1):51–60.  https://doi.org/10.1038/ncb2386 CrossRefPubMedGoogle Scholar
  37. 37.
    Grassi G, Di Caprio G, Santangelo L, Fimia GM, Cozzolino AM, Komatsu M, Ippolito G, Tripodi M, Alonzi T (2015) Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis 6:e1880.  https://doi.org/10.1038/cddis.2015.249 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kenific CM, Stehbens SJ, Goldsmith J, Leidal AM, Faure N, Ye J, Wittmann T, Debnath J (2016) NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 212(5):577–590.  https://doi.org/10.1083/jcb.201503075 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S, Macleod KF (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15(8):1660–1672.  https://doi.org/10.1016/j.celrep.2016.04.065 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA (2011) Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell Cycle 10(22):3871–3885.  https://doi.org/10.4161/cc.10.22.17976 CrossRefPubMedGoogle Scholar
  41. 41.
    Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5(4):e10240.  https://doi.org/10.1371/journal.pone.0010240 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Peng YF, Shi YH, Ding ZB, Ke AW, CY G, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9(12):2056–2068.  https://doi.org/10.4161/auto.26398 CrossRefPubMedGoogle Scholar
  43. 43.
    Peng YF, Shi YH, Shen YH, Ding ZB, Ke AW, Zhou J, Qiu SJ, Fan J (2013) Promoting colonization in metastatic HCC cells by modulation of autophagy. PLoS One 8(9):e74407.  https://doi.org/10.1371/journal.pone.0074407 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6):R109.  https://doi.org/10.1186/bcr3576 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 31(17):3616–3629.  https://doi.org/10.1128/mcb.05164-11 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564.  https://doi.org/10.1126/science.1203543 CrossRefPubMedGoogle Scholar
  47. 47.
    Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19(3):797–806.  https://doi.org/10.1091/mbc.E07-10-1092 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69(23):8844–8852.  https://doi.org/10.1158/0008-5472.can-08-4401 CrossRefPubMedGoogle Scholar
  49. 49.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293.  https://doi.org/10.1016/j.molcel.2010.09.023 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q, Xiong J (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34(6):1343–1351.  https://doi.org/10.1093/carcin/bgt063 CrossRefPubMedGoogle Scholar
  51. 51.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292.  https://doi.org/10.1016/j.cell.2011.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18(2):370–379.  https://doi.org/10.1158/1078-0432.ccr-11-1282 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhao H, Yang M, Zhao J, Wang J, Zhang Y, Zhang Q (2013) High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med Oncol 30(1):475.  https://doi.org/10.1007/s12032-013-0475-1 CrossRefPubMedGoogle Scholar
  54. 54.
    Kim YH, Baek SH, Kim EK, Ha JM, Jin SY, Lee HS, Ha HK, Song SH, Kim SJ, Shin HK, Yong J, Kim DH, Kim CD, Bae SS (2016) Uncoordinated 51-like kinase 2 signaling pathway regulates epithelial-mesenchymal transition in A549 lung cancer cells. FEBS Lett 590(9):1365–1374.  https://doi.org/10.1002/1873-3468.12172 CrossRefPubMedGoogle Scholar
  55. 55.
    Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A, Dinsdale D, Condorelli F, Brandner S, Campanella M, Grose R, Jones C, Salomoni P (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32(6):699–712.  https://doi.org/10.1038/onc.2012.111 CrossRefPubMedGoogle Scholar
  56. 56.
    Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45.  https://doi.org/10.1016/j.cell.2016.06.028 CrossRefPubMedGoogle Scholar
  57. 57.
    Ghavami S, Sharma P, Yeganeh B, Ojo OO, Jha A, Mutawe MM, Kashani HH, Los MJ, Klonisch T, Unruh H, Halayko AJ (2014) Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim Biophys Acta 1843(7):1259–1271.  https://doi.org/10.1016/j.bbamcr.2014.03.006 CrossRefPubMedGoogle Scholar
  58. 58.
    Ghavami S, Mutawe MM, Sharma P, Yeganeh B, McNeill KD, Klonisch T, Unruh H, Kashani HH, Schaafsma D, Los M, Halayko AJ (2011) Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis: a dual role for p53. PLoS One 6(1):e16523.  https://doi.org/10.1371/journal.pone.0016523 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Glogowska A, Stetefeld J, Weber E, Ghavami S, Hoang-Vu C, Klonisch T (2012) Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitin-proteasome pathway in human cancer cells. Neoplasia 14(5):396–409CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Schaafsma D, McNeill KD, Mutawe MM, Ghavami S, Unruh H, Jacques E, Laviolette M, Chakir J, Halayko AJ (2011) Simvastatin inhibits TGFbeta1-induced fibronectin in human airway fibroblasts. Respir Res 12:113.  https://doi.org/10.1186/1465-9921-12-113 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ghavami S, Mutawe MM, Hauff K, Stelmack GL, Schaafsma D, Sharma P, McNeill KD, Hynes TS, Kung SK, Unruh H, Klonisch T, Hatch GM, Los M, Halayko AJ (2010) Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta 1803(4):452–467.  https://doi.org/10.1016/j.bbamcr.2009.12.005 CrossRefPubMedGoogle Scholar
  62. 62.
    Schaafsma D, Dueck G, Ghavami S, Kroeker A, Mutawe MM, Hauff K, FY X, McNeill KD, Unruh H, Hatch GM, Halayko AJ (2011) The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol 44(3):394–403.  https://doi.org/10.1165/rcmb.2010-0052OC CrossRefPubMedGoogle Scholar
  63. 63.
    Long K, Mohan C, Anderl J, Huryn-Selvar K, Liu H, Su K, Santos M, Hsu M, Armstrong L, Ma J (2015) Analysis of autophagosome formation using lentiviral biosensors for live fluorescent cellular imaging. Methods Mol Biol 1219:157–169.  https://doi.org/10.1007/978-1-4939-1661-0_12 CrossRefPubMedGoogle Scholar
  64. 64.
    Yeganeh B, Rezaei Moghadam A, Alizadeh J, Wiechec E, Alavian SM, Hashemi M, Geramizadeh B, Samali A, Bagheri Lankarani K, Post M, Peymani P, Coombs KM, Ghavami S (2015) Hepatitis B and C virus-induced hepatitis: apoptosis, autophagy, and unfolded protein response. World J Gastroenterol 21(47):13225–13239.  https://doi.org/10.3748/wjg.v21.i47.13225 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IM (2015) Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:e1696.  https://doi.org/10.1038/cddis.2015.36 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yeganeh B, Ghavami S, Kroeker AL, Mahood TH, Stelmack GL, Klonisch T, Coombs KM, Halayko AJ (2015) Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol Lung Cell Mol Physiol 308(3):L270–L286.  https://doi.org/10.1152/ajplung.00011.2014 CrossRefPubMedGoogle Scholar
  67. 67.
    Gao W, Chen Z, Wang W, Stang MT (2013) E1-Like activating enzyme Atg7 is preferentially sequestered into p62 aggregates via its interaction with LC3-I. PLoS One 8(9):e73229.  https://doi.org/10.1371/journal.pone.0073229 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gupta SS, Zeglinski MR, Rattan SG, Landry NM, Ghavami S, Wigle JT, Klonisch T, Halayko AJ, Dixon IM (2016) Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget 7(48):78516–78531.  10.18632/oncotarget.12392 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ghavami S, Knight DA, Halayko AJ (2013) Autophagy is necessary for TGF-β1-induced extracellular matrix expression in idiopathic pulmonary fibrosis lung fibroblasts. Am J Respir Crit Care Med 187:A5165Google Scholar
  70. 70.
    Klionsky DJ, Abdelmohsen K, Abe A, al e (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222.  https://doi.org/10.1080/15548627.2015.1100356 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shin HS, Ryu ES, ES O, Kang DH (2015) Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Lab Invest 95(10):1157–1173.  https://doi.org/10.1038/labinvest.2015.91 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2017

Authors and Affiliations

  • Javad Alizadeh
    • 1
  • Shahla Shojaei
    • 1
  • Adel Sepanjnia
    • 2
  • Mohammad Hashemi
    • 3
  • Eftekhar Eftekharpour
    • 4
  • Saeid Ghavami
    • 1
    • 5
    • 6
  1. 1.Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Department of Immunology, School of MedicineJiroft University of Medical ScienceJiroftIran
  3. 3.Department of Clinical BiochemistryZahedan University of Medical SciencesZahedanIran
  4. 4.Department of Physiology and Pathophysiology, Regenerative Medicine, Program and Spinal Cord research Center, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
  5. 5.Biology of Breathing Theme, Children’s Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
  6. 6.Health Policy Research CentreShiraz University of Medical SciencesShirazIran

Personalised recommendations