pp 1-9 | Cite as

Quantitative Proteomic Analysis of Mass Limited Tissue Samples for Spatially Resolved Tissue Profiling

  • Paul D. Piehowski
  • Rui Zhao
  • Ronald J. Moore
  • Geremy Clair
  • Charles Ansong
Part of the Methods in Molecular Biology book series


Traditionally, proteomic studies have been carried out on whole tissues or organs enabling the profiling of thousands of proteins within a single LC-MS analysis. A disadvantage of this approach is that proteomes generated from whole tissues are an “average” that represents a blend of cell types and distinct anatomical regions which can obscure important biological phenomena. Laser capture microdissection (LCM) is an elegant method that allows tissue features of interest, as small as a single cell, to be identified and isolated for downstream analysis. Herein we describe an approach that utilizes an immobilized enzyme reactor (IMER) coupled directly to nanoLC-MS/MS for highly sensitive, automated, quantitative proteomic analysis of the microscopic tissue specimens generated by LCM.


Immobilized enzyme reactor Laser capture microdissection Mass spectrometry NanoLC Nanoproteomics Proteomics 



Portions of this research were supported by grants from the National Heart Lung Blood Institute of NIH (U01 HL122703), National Institute of General Medical Sciences of NIH (P41 GM103493) and the PNNL Laboratory-Directed Research and Development (LDRD) program. Work was performed in W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a Department Of Energy (DOE) office of Biological and Environmental Research (BER) national user facility located at Pacific Northwest National Laboratory (PNNL).


  1. 1.
    Nilsson T, Mann M, Aebersold R, Yates JR III, Bairoch A, Bergeron JJ (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7:681–685CrossRefPubMedGoogle Scholar
  2. 2.
    Piehowski PD, Petyuk VA, Orton DJ, Xie F, Moore RJ, Ramirez-Restrepo M, Engel A, Lieberman AP, Albin RL, Camp DG (2013) Sources of technical variability in quantitative LC–MS proteomics: human brain tissue sample analysis. J Proteome Res 12:2128–2137CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721CrossRefPubMedGoogle Scholar
  4. 4.
    Altelaar AFM, Heck AJR (2012) Trends in ultrasensitive proteomics. Curr Opin Chem Biol 16:206–213CrossRefPubMedGoogle Scholar
  5. 5.
    Wang N, MG X, Wang P, Li L (2010) Development of mass spectrometry-based shotgun method for proteome analysis of 500 to 5000 cancer cells. Anal Chem 82:2262–2271CrossRefPubMedGoogle Scholar
  6. 6.
    Wang HX, Qian WJ, Mottaz HM, Clauss TRW, Anderson DJ, Moore RJ, Camp DG, Khan AH, Sforza DM, Pallavicini M, Smith DJ, Smith RD (2005) Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4:2397–2403CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Braakman RBH, Tilanus-Linthorst MMA, Liu NQ, Stingl C, Dekker LJM, Luider TM, Martens JWM, Foekens JA, Umar A (2012) Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue. J Proteomics 75:2844–2854CrossRefPubMedGoogle Scholar
  8. 8.
    Liu NQ, Braakman RBH, Stingl C, Luider TM, Martens JWM, Foekens JA, Umar A (2012) Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia 17:155–164CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319–324CrossRefPubMedGoogle Scholar
  10. 10.
    De Marchi T, Braakman RBH, Stingl C, van Duijn MM, Smid M, Foekens JA, Luider TM, Martens JWM, Umar A (2016) The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies. Proteomics 16:1474–1485CrossRefPubMedGoogle Scholar
  11. 11.
    Chen W, Wang S, Adhikari S, Deng Z, Wang L, Chen L, Ke M, Yang P, Tian R (2016) Simple and integrated spintip-based technology applied for deep proteome profiling. Anal Chem 88:4864–4871CrossRefPubMedGoogle Scholar
  12. 12.
    Wisniewski JR, Ostasiewicz P, Mann M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 10:3040–3049CrossRefPubMedGoogle Scholar
  13. 13.
    Ethier M, Hou WM, Duewel HS, Figeys D (2006) The proteomic reactor: a microfluidic device for processing minute amounts of protein prior to mass spectrometry analysis. J Proteome Res 5:2754–2759CrossRefPubMedGoogle Scholar
  14. 14.
    Liebler DC, Ham AJL (2009) Spin filter-based sample preparation for shotgun proteomics. Nat Methods 6:785–785CrossRefPubMedGoogle Scholar
  15. 15.
    Nel AJ, Garnett S, Blackburn JM, Soares NC (2015) Comparative re-evaluation of FADP and enhanced FASP methods by LC-MS/MS. J Proteome Res 14(3):1637–1642Google Scholar
  16. 16.
    Tian RJ, Alvarez-Saavedra M, Cheng HYM, Figeys D (2011) Uncovering the proteome response of the master circadian clock to light using an AutoProteome system. Mol Cell Proteomics 10Google Scholar
  17. 17.
    Lopez-Ferrer D, Petritis K, Robinson EW, Hixson KK, Tian ZX, Lee JH, Lee SW, Tolic N, Weitz KK, Belov ME, Smith RD, Pasa-Tolic L (2011) Pressurized pepsin digestion in proteomics. Mol Cell Proteomics 10Google Scholar
  18. 18.
    Lopez-Ferrer D, Petritis K, Lourette NM, Clowers B, Hixson KK, Heibeck T, Prior DC, Pasa-Tolic L, Camp DG, Belov ME, Smith RD (2008) On-line digestion system for protein characterization and proteome analysis. Anal Chem 80:8930–8936CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang EL, Piehowski PD, Orton DJ, Moore RJ, Qian W-J, Casey CP, Sun X, Dey SK, Burnum-Johnson KE, Smith RD (2016) SNaPP: simplified nanoproteomics platform for reproducible global proteomic analysis of nanogram protein quantities. Endocrinology 157:1307–1314CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hustoft HK, Brandtzaeg OK, Rogeberg M, Misaghian D, Torsetnes SB, Greibrokk T, Reubsaet L, Wilson SR, Lundanes E (2013) Integrated enzyme reactor and high resolving chromatography in “sub-chip” dimensions for sensitive protein mass spectrometry. Sci Rep 3:3511ADSCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E (2014) Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS One 9Google Scholar
  22. 22.
    Jiang S, Zhang Z, Li L (2015) A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. J Chromatogr A 1412:75–81CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yamaguchi H, Miyazaki M (2013) Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies. Proteomics 13:457–466CrossRefPubMedGoogle Scholar
  24. 24.
    Safdar M, Sproß J, Jänis J (2014) Microscale immobilized enzyme reactors in proteomics: latest developments. J Chromatogr A 1324:1–10CrossRefPubMedGoogle Scholar
  25. 25.
    Colquhoun DR, Feild BJ (2015) Automated, online sample preparation for LC-MS analyses: affinity capture, digestion, and clean-up. State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization volume 3. Defining the next generation of analytical and biophysical techniques. Am Chem Soc 1202:335–356Google Scholar
  26. 26.
    Clair G, Piehowski PD, Nicola T, Kitzmiller JA, Huang EL, Zink EM, Sontag RL, Orton DJ, Moore RJ, Carson JP (2016) Spatially-resolved proteomics: rapid quantitative analysis of laser capture microdissected alveolar tissue samples. Sci Rep 6:39223ADSCrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Slysz GW, Lewis DF, Schriemer DC (2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system. J Proteome Res 5:1959–1966CrossRefPubMedGoogle Scholar
  28. 28.
    Slysz GW, Schriemer DC (2009) Integrating accelerated tryptic digestion into proteomics workflows. Methods Mol Biol 492:241–254CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Paul D. Piehowski
    • 1
  • Rui Zhao
    • 2
  • Ronald J. Moore
    • 1
  • Geremy Clair
    • 1
  • Charles Ansong
    • 1
  1. 1.Biological Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations