pp 1-10 | Cite as

Decellularization of Bovine Small Intestinal Submucosa

  • Mahmut Parmaksiz
  • Ayşe Eser Elçin
  • Yaşar Murat Elçin
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Decellularization technology promises to overcome some of the significant limitations in the regenerative medicine field by providing functional biocompatible grafts. The technique involves removal of the cells from the biological tissues or organs for further use in tissue engineering and clinical interventions. There are significant differences between decellularization protocols due to the intrinsic properties of different tissue types and purpose of use. This multistep, chemical-solution-based protocol is optimized for the preparation of decellularized bovine small intestinal submucosa (SIS).

Keywords:

Decellularization Bovine Small intestinal submucosa (SIS) Xenogenic biomaterials Extracellular matrix (ECM) Regenerative medicine Bioactive materials 

References

  1. 1.
    Cornwell KG, Landsman A, James KS (2009) Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 26(4):507–523CrossRefPubMedGoogle Scholar
  2. 2.
    Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM (2016) Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Topical review. Biomed Mater 11(2):022003Google Scholar
  3. 3.
    Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67(4):478–491CrossRefPubMedGoogle Scholar
  4. 4.
    McDevitt C, Wildey GM, Cutrone RM (2003) Transforming growth factorbeta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A 67:637–640CrossRefPubMedGoogle Scholar
  5. 5.
    Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8(1):11–24CrossRefPubMedGoogle Scholar
  6. 6.
    Londono R, Badylak SF (2015) Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 43:577–592CrossRefPubMedGoogle Scholar
  7. 7.
    Parmaksiz M, Elcin AE, Elcin YM (2015) Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J Tissue Eng Regen Med. doi:10.1002/term.2071 (Epub ahead of print)PubMedGoogle Scholar
  8. 8.
    Hoshiba T, Lu H, Kawazoe N, Chen G (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10:1717–1728CrossRefPubMedGoogle Scholar
  9. 9.
    Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80CrossRefPubMedGoogle Scholar
  10. 10.
    Badylak SF, Liang A, Record R, Tullius R, Hodde J (1999) Endothelial cell adherence to small intestinal submucosa: an acellular bioscaffold. Biomaterials 20(23–24):2257–2263CrossRefPubMedGoogle Scholar
  11. 11.
    Lindberg K, Badylak SF (2001) Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns 27(3):254–266CrossRefPubMedGoogle Scholar
  12. 12.
    Pribitkin EA, Ambro BT, Bloeden E, O’Hara BJ (2004) Rabbit ear cartilage regeneration with a small intestinal submucosa graft. Laryngoscope 114:1–19CrossRefPubMedGoogle Scholar
  13. 13.
    Caione P, Capozza N, Zavaglia D, Palombaro G, Boldrini R (2006) In vivo bladder regeneration using small intestinal submucosa: experimental study. Pediatr Surg Int 22(7):593–599CrossRefPubMedGoogle Scholar
  14. 14.
    Gilbert T, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683PubMedGoogle Scholar
  15. 15.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J, Misiuga M, Nowak M, Bielecki T, Kasperczyk A (2017) A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33865 (Epub ahead of print)Google Scholar
  17. 17.
    Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, Wolf MT, Tottey S, Barnes CA, Ratner BD, Badylak SF (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17:411–421CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 85:25–34CrossRefGoogle Scholar
  19. 19.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221CrossRefPubMedGoogle Scholar
  20. 20.
    Xu H, Xu B, Yang Q, Li X, Ma X, Xia Q, Zhang Y, Zhang C, Wu Y, Zhang Y (2014) Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS One 9:1–13Google Scholar
  21. 21.
    Roosens A, Somers P, De Somer F, Carriel V, Van Nooten G, Cornelissen R (2016) Impact of detergent-based decellularization methods on porcine tissues for heart valve engineering. Ann Biomed Eng 44:2827–2839CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mahmut Parmaksiz
    • 1
  • Ayşe Eser Elçin
    • 1
  • Yaşar Murat Elçin
    • 2
    • 3
  1. 1.Tissue Engineering, Biomaterials and Nanobiotechnology LaboratoryAnkara University Faculty of Science, and Ankara University Stem Cell InstituteAnkaraTurkey
  2. 2.Biovalda Health Technologies, Inc.AnkaraTurkey
  3. 3.Tissue Engineering, Biomaterials and Nanobiotechnology LaboratoryAnkara University Faculty of ScienceAnkaraTurkey

Personalised recommendations