Organoids pp 33-42 | Cite as

Construction of Thymus Organoids from Decellularized Thymus Scaffolds

  • Asako Tajima
  • Isha Pradhan
  • Xuehui Geng
  • Massimo Trucco
  • Yong FanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1576)


One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze–thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.


Thymus Scaffold Tissue engineering Organoids Decellularization 



This work was supported in part by the National Institutes of Health grant R01 AI123392 (YF) and by the generous support of Allegheny Health Network to the Institute of Cellular Therapeutics.


  1. 1.
    Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14(6):377–391. doi: 10.1038/nri3667 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M (2009) Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J 28(18):2812–2824. doi: 10.1038/emboj.2009.212 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fan Y, Gualtierotti G, Tajima A, Grupillo M, Coppola A, He J et al (2014) Compromised central tolerance of ICA69 induces multiple organ autoimmunity. J Autoimmun 53:10–25. doi: 10.1016/j.jaut.2014.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13(11):831–838. doi: 10.1038/nri3534 CrossRefPubMedGoogle Scholar
  5. 5.
    Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1997) Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 11(5):421–440PubMedGoogle Scholar
  6. 6.
    Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194(9):4073–4080. doi: 10.4049/jimmunol.1500046 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nikolich-Zugich J, Rudd BD (2010) Immune memory and aging: an infinite or finite resource? Curr Opin Immunol 22(4):535–540. doi: 10.1016/j.coi.2010.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Palmer DB (2013) The effect of age on thymic function. Front Immunol 4:316. doi: 10.3389/fimmu.2013.00316 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Borges M, Barreira-Silva P, Florido M, Jordan MB, Correia-Neves M, Appelberg R (2012) Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. J Immunol 189(7):3600–3608. doi: 10.4049/jimmunol.1201525 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ye P, Kirschner DE, Kourtis AP (2004) The thymus during HIV disease: role in pathogenesis and in immune recovery. Curr HIV Res 2(2):177–183CrossRefGoogle Scholar
  11. 11.
    Black S, De Gregorio E, Rappuoli R (2015) Developing vaccines for an aging population. Sci Transl Med 7(281):281ps8. doi: 10.1126/scitranslmed.aaa0722 CrossRefPubMedGoogle Scholar
  12. 12.
    Di Stefano B, Graf T (2014) Hi-TEC reprogramming for organ regeneration. Nat Cell Biol 16(9):824–825. doi: 10.1038/ncb3032 CrossRefPubMedGoogle Scholar
  13. 13.
    Bredenkamp N, Nowell CS, Blackburn CC (2014) Regeneration of the aged thymus by a single transcription factor. Development 141(8):1627–1637. doi: 10.1242/dev.103614 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135. doi: 10.1038/nri1781 CrossRefPubMedGoogle Scholar
  15. 15.
    Ohigashi I, Kozai M, Takahama Y (2016) Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 271(1):10–22. doi: 10.1111/imr.12404 CrossRefPubMedGoogle Scholar
  16. 16.
    Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  17. 17.
    Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176. doi: 10.1146/annurev.immunol.21.120601.141107 CrossRefPubMedGoogle Scholar
  18. 18.
    Seach N, Mattesich M, Abberton K, Matsuda K, Tilkorn DJ, Rophael J et al (2010) Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng Part C Methods 16(3):543–551. doi: 10.1089/ten.TEC.2009.0135 CrossRefPubMedGoogle Scholar
  19. 19.
    Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S (2009) Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–9. doi: 10.1109/IEMBS.2009.5333145 CrossRefPubMedGoogle Scholar
  20. 20.
    Booth C, Soker T, Baptista P, Ross CL, Soker S, Farooq U et al (2012) Liver bioengineering: current status and future perspectives. World J Gastroenterol 18(47):6926–6934. doi: 10.3748/wjg.v18.i47.6926 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M et al (2015) Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther 23(7):1262–77. doi: 10.1038/mt.2015.77 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Asako Tajima
    • 1
  • Isha Pradhan
    • 1
  • Xuehui Geng
    • 2
  • Massimo Trucco
    • 1
    • 3
    • 4
  • Yong Fan
    • 5
    • 3
    • 4
    Email author
  1. 1.Institute of Cellular Therapeutics, Allegheny Health NetworkPittsburghUSA
  2. 2.Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Microbiology and ImmunologyMedical College of Drexel UniversityPhiladelphiaUSA
  5. 5.Institute of Cellular Therapeutics, Allegheny Health NetworkPittsburghUSA

Personalised recommendations