Skip to main content

Visualizing the Functional Heterogeneity of Muscle Stem Cells

  • Protocol
  • First Online:
Stem Cell Heterogeneity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1516))

Abstract

Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses “stemness” and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoppe PS, Coutu DL, Schroeder T (2014) Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol 16(10):919–927. doi:10.1038/ncb3042

    Article  CAS  PubMed  Google Scholar 

  2. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191

    Article  CAS  PubMed  Google Scholar 

  4. Wang YX, Dumont NA, Rudnicki MA (2014) Muscle stem cells at a glance. J Cell Sci 127(21):4543–4548

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175(1):84–94

    Article  CAS  PubMed  Google Scholar 

  6. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(1–2):112–125

    Article  CAS  PubMed  Google Scholar 

  8. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337(1):29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4(3):217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340(2):330–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogawa R, Ma Y, Yamaguchi M, Ito T, Watanabe Y, Ohtani T, Murakami S, Uchida S, De Gaspari P, Uezumi A, Nakamura M, Miyagoe-Suzuki Y, Tsujikawa K, Hashimoto N, Braun T, Tanaka T, Takeda S, Yamamoto H, Fukada S (2015) Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration. Development 142(1):51–61

    Article  CAS  PubMed  Google Scholar 

  13. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ono Y, Masuda S, Nam HS, Benezra R, Miyagoe-Suzuki Y, Takeda S (2012) Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J Cell Sci 125(Pt 5):1309–1317. doi:10.1242/jcs.096198

    Article  CAS  PubMed  Google Scholar 

  15. Moyle LA, Zammit PS (2014) Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells. Methods Mol Biol 1210:63–78. doi:10.1007/978-1-4939-1435-7_6

    Article  CAS  PubMed  Google Scholar 

  16. Lepper C, Fan CM (2010) Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48(7):424–436. doi:10.1002/dvg.20630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ono Y, Urata Y, Goto S, Nakagawa S, Humbert PO, Li TS, Zammit PS (2015) Muscle stem cell fate is controlled by the cell-polarity protein Scrib. Cell Rep 10(7):1135–1148. doi:10.1016/j.celrep.2015.01.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Daiki Seko for the image shown in Fig. 1a. This work was supported by the Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency (JST), a Grant-in-Aid for Challenging Exploratory Research (Research Project Number 25560338) and a Grant-in-Aid for Young Scientists A (Research Project Number 15H05368) from the Japan Society for the Promotion of Science (JSPS), and the Ichiro Kanehara Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ono Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kitajima, Y., Ogawa, S., Ono, Y. (2016). Visualizing the Functional Heterogeneity of Muscle Stem Cells. In: Turksen, K. (eds) Stem Cell Heterogeneity. Methods in Molecular Biology, vol 1516. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_349

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_349

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6549-6

  • Online ISBN: 978-1-4939-6550-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics