Heterogeneity of Stem Cells: A Brief Overview

  • Györgyi Műzes
  • Ferenc Sipos
Part of the Methods in Molecular Biology book series (MIMB, volume 1516)


Stem cells possess the extraordinary capacity of self-renewal and differentiation to various cell types, thus to form original tissues and organs. Stem cell heterogeneity including genetic and nongenetic mechanisms refers to biological differences amongst normal and stem cells originated within the same tissue. Cell differentiation hierarchy and stochasticity in gene expression and signaling pathways may result in phenotypic differences of stem cells. The maintenance of stemness and activation of differentiation potential are fundamentally orchestrated by microenvironmental stem cell niche-related cellular and humoral signals.


Embryonic stem cells Adult stem cells Cancer stem cells Induced pluripotent stem cells Differentiation Microenvironment 


  1. 1.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hui H, Tang Y, Hu M, Zhao X (2011) Stem Cells: General Features and Characteristics. Ali Gholamrezanezhad (ed). Stem Cells in Clinic and Research; ISBN: 978-953-307-797-0. InTech.
  3. 3.
    Damdimopoulou P, Rodin S, Stenfelt S et al (2015) Human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. doi: 10.1016/j.bpobgyn.2015.08.010 PubMedGoogle Scholar
  4. 4.
    Stem Cell Basics. In Stem Cell Information [World Wide Web site]. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2015 Available at
  5. 5.
    Grinnemo KH, Sylvén C, Hovatta O et al (2008) Immunogenicity of human embryonic stem cells. Cell Tissue Res 331:67–78PubMedCrossRefGoogle Scholar
  6. 6.
    Ledda S, Bogliolo L, Bebbere D et al (2010) Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species. Theriogenology 74:534–543PubMedCrossRefGoogle Scholar
  7. 7.
    Kakegawa R, Teramura T, Takehara T et al (2008) Isolation and culture of rabbit primordial germ cells. J Reprod Dev 54:352–357PubMedCrossRefGoogle Scholar
  8. 8.
    Roach S, Cooper S, Bennett W et al (1993) Cultured cell lines from human teratomas: windows into tumour growth and differentiation and early human development. Eur Urol 23:82–87PubMedGoogle Scholar
  9. 9.
    Shamblott MJ, Axelman J, Littlefield JW et al (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci U S A 98:113–118PubMedCrossRefGoogle Scholar
  10. 10.
    Lee MW, Jang IK, Yoo KH et al (2010) Stem and progenitor cells in human umbilical cord blood. Int J Hematol 92:45–51PubMedCrossRefGoogle Scholar
  11. 11.
    Lee ES, Bou-Gharios G, Seppanen E et al (2010) Fetal stem cell microchimerism: natural-born healers or killers? Mol Hum Reprod 16:869–878PubMedCrossRefGoogle Scholar
  12. 12.
    Navarrete C, Contreras M (2009) Cord blood banking: a historical perspective. Br J Haematol 147:236–245PubMedCrossRefGoogle Scholar
  13. 13.
    Harari-Steinberg O, Pleniceanu O, Dekel B (2011) Selecting the optimal cell for kidney regeneration: fetal, adult or reprogrammed stem cells. Organogenesis 7:123–134PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Biazar E (2014) Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin Biol Ther 14:301–310PubMedCrossRefGoogle Scholar
  15. 15.
    Wabik A, Jones PH (2015) Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 34:1164–1179PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tsimbouri PM (2015) Adult stem cell responses to nanostimuli. J Funct Biomater 6:598–622PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200PubMedCrossRefGoogle Scholar
  18. 18.
    Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234PubMedCrossRefGoogle Scholar
  19. 19.
    Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102:3483–3493PubMedCrossRefGoogle Scholar
  20. 20.
    Yagi H, Soto-Gutierrez A, Kitagawa Y et al (2010) Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant 19:823–830PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Quesenberry PJ, Goldberg LR, Dooner MS (2015) Concise reviews: a stem cell apostasy: a tale of four H words. Stem Cells 33:15–20PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bone Marrow (Hematopoietic) Stem Cells. In Stem Cell Information [World Wide Web site]. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2011. Available at
  23. 23.
    Barrilleaux B, Phinney DG, Prockop DJ et al (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019PubMedCrossRefGoogle Scholar
  24. 24.
    Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260PubMedCrossRefGoogle Scholar
  25. 25.
    Feisst V, Meidinger S, Locke MB (2015) From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning 8:149–162PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhang HJ, Miao ZC, He ZP et al (2005) The existence of epithelial-to-mesenchymal cells with the ability to support hematopoiesis in human fetal liver. Cell Biol Int 29:213–219PubMedCrossRefGoogle Scholar
  28. 28.
    Tondreau T, Meuleman N, Delforge A et al (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112PubMedCrossRefGoogle Scholar
  29. 29.
    Zheng CL, Yang SG, Guo ZX et al (2009) Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplant 18:1093–1109PubMedCrossRefGoogle Scholar
  30. 30.
    Fukuchi Y, Nakajima H, Sugiyama D et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658PubMedCrossRefGoogle Scholar
  31. 31.
    Sarugaser R, Lickorish D, Baksh D et al (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229PubMedCrossRefGoogle Scholar
  32. 32.
    Lu LL, Liu YJ, Yang SG et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  33. 33.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hermida-Gomez T, Fuentes-Boquete I, Gimeno-Longas MJ et al (2011) Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol 38:339–349PubMedCrossRefGoogle Scholar
  35. 35.
    Park JC, Kim JM, Jung IH et al (2011) Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 38:721–731PubMedCrossRefGoogle Scholar
  36. 36.
    Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Human Reprod 23:934–943CrossRefGoogle Scholar
  37. 37.
    Sakaguchi Y, Sekiya I, Yagishita K et al (2004) Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104:2728–2735PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu H, Guo ZK, Jiang XX et al (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560PubMedCrossRefGoogle Scholar
  39. 39.
    Wang Y, Han ZB, Ma J et al (2012) A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells Dev 21:1401–1408PubMedCrossRefGoogle Scholar
  40. 40.
    Wang Y, Zhang Z, Chi Y et al (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhaoa Q, Renb H, Hana Z (2015) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother. doi: 10.1016/j.jocit.2014.12.001 Google Scholar
  42. 42.
    Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62PubMedGoogle Scholar
  43. 43.
    Barry FP, Boynton RE, Haynesworth S et al (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 265:134–139PubMedCrossRefGoogle Scholar
  44. 44.
    Barry F, Boynton R, Murphy M et al (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524PubMedCrossRefGoogle Scholar
  45. 45.
    Martinez C, Hofmann TJ, Marino R et al (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Xu J, Liao WB, Gu DS et al (2009) Neural ganglioside GD2 identifies a subpopulation of MSC in human umbilical cord. Cell Physiol Biochem 23:415–424PubMedCrossRefGoogle Scholar
  47. 47.
    Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomedical Sci 10:228–241CrossRefGoogle Scholar
  48. 48.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  49. 49.
    Majumdar MK, Thiede MA, Mosca JD et al (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66PubMedCrossRefGoogle Scholar
  50. 50.
    Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896PubMedCrossRefGoogle Scholar
  51. 51.
    Zhao Q, Ren H, Li X et al (2009) Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 11:414–426PubMedCrossRefGoogle Scholar
  52. 52.
    Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57PubMedCrossRefGoogle Scholar
  53. 53.
    Weiss ML, Anderson C, Medicetty S et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874PubMedCrossRefGoogle Scholar
  54. 54.
    Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tan S, Barker N (2015) Epithelial stem cells and intestinal cancer. Semin Cancer Biol 32:40–53PubMedCrossRefGoogle Scholar
  56. 56.
    Vries RG, Huch M, Clevers H (2010) Stem cells and cancer of the stomach and intestine. Mol Oncol 4:373–384PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Barker N, Bartfeld S, Clevers H (2010) Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7:656–670PubMedCrossRefGoogle Scholar
  58. 58.
    Pirvulet V (2015) Gastrointestinal stem cell up-to-date. J Med Life 8:245–249PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sipos F, Műzes G (2015) Injury-associated reacquiring of intestinal stem cell function. World J Gastroenterol 21:2005–2010PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Buczacki SJ, Zecchini HI, Nicholson AM et al (2013) Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69PubMedCrossRefGoogle Scholar
  61. 61.
    Newsome PN, Hussain MA, Theise ND (2004) Hepatic oval cells: helping redefine a paradigm in stem cell biology. Curr Top Dev Biol 61:1–28PubMedCrossRefGoogle Scholar
  62. 62.
    Shafritz DA, Oertel M, Menthena A et al (2006) Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43:S89–S98PubMedCrossRefGoogle Scholar
  63. 63.
    Sekine S, Gutiérrez PJ, Lan BY et al (2007) Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45:361–368PubMedCrossRefGoogle Scholar
  64. 64.
    Verhulst S, Best J, van Grunsven LA et al (2015) Advances in hepatic stem/progenitor cell biology. EXCLI J 14:33–47PubMedPubMedCentralGoogle Scholar
  65. 65.
    Marty-Santos L, Cleaver O (2015) Progenitor epithelium: sorting out pancreatic lineages. J Histochem Cytochem 63:559–574PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    May R, Sureban SM, Lightfoot SA et al (2010) Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas. Am J Physiol Gastrointest Liver Physiol 299:G303–G310PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yang JH, Lee SH, Heo YT et al (2010) Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochem Biophys Res Commun 397:679–684PubMedCrossRefGoogle Scholar
  68. 68.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  69. 69.
    Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176:2584–2594PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291PubMedCrossRefGoogle Scholar
  71. 71.
    Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Z, Ouyang G (2012) Periostin: a bridge between cancer stem cells and their metastatic niche. Cell Stem Cell 10:111–112PubMedCrossRefGoogle Scholar
  73. 73.
    Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov 13:497–512PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822PubMedCrossRefGoogle Scholar
  75. 75.
    Huntly BJ, Shigematsu H, Deguchi K et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596PubMedCrossRefGoogle Scholar
  76. 76.
    Huang Z, Wu T, Liu AY et al (2015) Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget 6:39550–39563PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Friedmann-Morvinski D, Bushong EA, Ke E et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Scaffidi P, Misteli T (2011) In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 13:1051–1061PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828PubMedCrossRefGoogle Scholar
  81. 81.
    Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefGoogle Scholar
  82. 82.
    Soda Y, Marumoto T, Friedmann-Morvinski D et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 108:4274–4280PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Liu AY, Ouyang G (2013) Tumor angiogenesis: a new source of pericytes. Curr Biol 23:R565–R568PubMedCrossRefGoogle Scholar
  85. 85.
    Amamoto R, Arlotta P (2014) Development-inspired reprogramming of the mammalian central nervous system. Science 343:1239882PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59:168–179PubMedCrossRefGoogle Scholar
  87. 87.
    Klein CA (2010) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21:42–49PubMedCrossRefGoogle Scholar
  88. 88.
    Brabletz T (2012) To differentiate or not—routes towards metastasis. Nat Rev Cancer 12:425–436PubMedCrossRefGoogle Scholar
  89. 89.
    Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMedCrossRefGoogle Scholar
  90. 90.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang SH, Lin SY (2013) Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention. Exp Hematol Oncol 2:29PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Donnenberg VS, Meyer EM, Donnenberg AD (2009) Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol 568:261–279PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984PubMedCrossRefGoogle Scholar
  94. 94.
    Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ranganathan AC, Adam AP, Zhang L et al (2006) Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5:729–735PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lamb R, Lisanti MP, Clarke RB et al (2014) Co-ordination of cell cycle, migration and stem cell-like activity in breast cancer. Oncotarget 5:7833–7842PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lara-Padilla E, Caceres-Cortes JR (2012) On the nature of the tumor-initiating cell. Curr Stem Cell Res Ther 7:26–35PubMedCrossRefGoogle Scholar
  100. 100.
    Kleffel S, Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734:145–179PubMedCrossRefGoogle Scholar
  101. 101.
    Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340PubMedCrossRefGoogle Scholar
  102. 102.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedCrossRefGoogle Scholar
  103. 103.
    Suzuki M, Mose ES, Montel V et al (2006) Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169:673–681PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yamazaki S, Iwama A, Takayanagi S et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256PubMedCrossRefGoogle Scholar
  106. 106.
    Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13:328–341PubMedCrossRefGoogle Scholar
  107. 107.
    Suzuki HI, Kiyono K, Miyazono M (2010) Regulation of autophagy by transforming growth factor-β (TGFβ) signaling. Autophagy 6:645–647PubMedCrossRefGoogle Scholar
  108. 108.
    Kobayashi A, Okuda H, Xing F et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 28:2641–2655CrossRefGoogle Scholar
  109. 109.
    Vermeulen L, De Sousa E, Melo F et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476PubMedCrossRefGoogle Scholar
  110. 110.
    Sikandar SS, Pate KT, Anderson S et al (2010) NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 70:1469–1478PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kise K, Kinugasa-Katayama Y, Takakura N (2015) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev. doi: 10.1016/j.addr.2015.08.005 PubMedGoogle Scholar
  112. 112.
    Wang ZY, Chen Z (2000) Differentiation and apoptosis induction therapy in acute promyelocytic leukaemia. Lancet Oncol 1:101–106PubMedCrossRefGoogle Scholar
  113. 113.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  114. 114.
    Ying QL, Nichols J, Chambers I et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292PubMedCrossRefGoogle Scholar
  115. 115.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  116. 116.
    Wang Y, Baskerville S, Shenoy A et al (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bao X, Zhu X, Liao B et al (2013) MicroRNAs in somatic cell reprogramming. Curr Opin Cell Biol 25:208–214PubMedCrossRefGoogle Scholar
  118. 118.
    Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275PubMedCrossRefGoogle Scholar
  119. 119.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sivakumar M, Dineshshankar J, Sunil PM et al (2015) Stem cells: an insight into the therapeutic aspects from medical and dental perspectives. J Pharm Bioallied Sci 7:S361–S371PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Guillot PV (2015) Induced pluripotent stem (iPS) cells from human fetal stem cells. Best Pract Res Clin Obstet Gynaecol. doi: 10.1016/j.bpobgyn.2015.08.007 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.2nd Department of Medicine, Immunology DivisionSemmelweis UniversityBudapestHungary

Personalised recommendations