In Vitro Culture of Human Hematopoietic Stem Cells in Serum Free Medium and Their Monitoring by Flow Cytometry

  • Marc Cloutier
  • Christine Jobin
  • Carl Simard
  • Sonia Néron
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1516)

Abstract

Hematopoietic stem cells can be isolated from human blood cells trapped in leukoreduction systems. The leukoreduction systems filters or chambers are usually discarded from routine blood or platelet donations in blood banks around the world. These CD34+ cells are a good source of normal stem cells and can be used as models to characterize the blood stem cells before and after culture in vitro. This chapter contains detailed methodologies for the isolation of stem cells from peripheral blood, the culture of these cells in a medium exempt of animal proteins and for the flow cytometry analysis of the resulting cell population for the characterization of their differentiation

Keywords

Adult CD34+ cells Hematopoietic progenitors Stem cell expansion Animal protein free medium Flow cytometry Multiparametric methods SPADE 

References

  1. 1.
    Webb S (2013) Banking on cord blood stem cells. Nat Biotechnol 31:585–588CrossRefPubMedGoogle Scholar
  2. 2.
    Bittencourt H, Rocha V, Chevret S, Socie G, Esperou H, Devergie A, Dal Cortivo L, Marolleau JP, Garnier F, Ribaud P, Gluckman E (2002) Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. Blood 99:2726–2733CrossRefPubMedGoogle Scholar
  3. 3.
    Remberger M, Torlen J, Ringden O, Engstrom M, Watz E, Uhlin M, Mattsson J (2015) The effect of total nucleated and CD34+ cell dose on outcome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21:889–893CrossRefPubMedGoogle Scholar
  4. 4.
    Castillo N, Garcia-Cadenas I, Barba P, Martino R, Azqueta C, Ferra C, Canals C, Sierra J, Valcarcel D, Querol S (2015) Post-thaw viable CD45(+) cells and clonogenic efficiency are associated with better engraftment and outcomes after single cord blood transplantation in adult patients with malignant diseases. Biol Blood Marrow Transplant 21:2167–2172CrossRefPubMedGoogle Scholar
  5. 5.
    Pineault N, Abu-Khader A (2015) Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 43:498–513CrossRefPubMedGoogle Scholar
  6. 6.
    Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, Csaszar E, Knapp DJ, Miller P, Ngom M, Imren S, Roy DC, Watts KL, Kiem HP, Herrington R, Iscove NN, Humphries RK, Eaves CJ, Cohen S, Marinier A, Zandstra PW, Sauvageau G (2014) Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345:1509–1512CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Anderlini P, Korbling M (1997) The use of mobilized peripheral blood stem cells from normal donors for allografting. Stem Cells 15:9–17CrossRefPubMedGoogle Scholar
  8. 8.
    Herbein G, Sovalat H, Wunder E, Baerenzung M, Bachorz J, Lewandowski H, Schweitzer C, Schmitt C, Kirn A, Henon P (1994) Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood. Stem Cells 12:187–197CrossRefPubMedGoogle Scholar
  9. 9.
    Peytour Y, Villacreces A, Chevaleyre J, Ivanovic Z, Praloran V (2013) Discarded leukoreduction filters: a new source of stem cells for research, cell engineering and therapy? Stem Cell Res 11:736–742CrossRefPubMedGoogle Scholar
  10. 10.
    Néron S, Thibault L, Dussault N, Cote G, Ducas E, Pineault N, Roy A (2007) Characterization of mononuclear cells remaining in the leukoreduction system chambers of apheresis instruments after routine platelet collection: a new source of viable human blood cells. Transfusion 47:1042–1049CrossRefPubMedGoogle Scholar
  11. 11.
    Peytour Y, Guitart A, Villacreces A, Chevaleyre J, Lacombe F, Ivanovic Z, Praloran V (2010) Obtaining of CD34+ cells from healthy blood donors: development of a rapid and efficient procedure using leukoreduction filters. Transfusion 50:2152–2157CrossRefPubMedGoogle Scholar
  12. 12.
    Duchez P, Chevaleyre J, Brunet de la Grange P, Vlaski M, Boiron JM, Wouters G, Ivanovic Z (2013) Cryopreservation of hematopoietic stem and progenitor cells amplified ex vivo from cord blood CD34+ cells. Transfusion 53:2012–2019CrossRefPubMedGoogle Scholar
  13. 13.
    Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC, Vuk-Pavlovic S (2006) A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. Transfusion 46:2083–2089CrossRefPubMedGoogle Scholar
  14. 14.
    Jobin C, Cloutier M, Simard C, Neron S (2015) Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy 17:1472–1484CrossRefPubMedGoogle Scholar
  15. 15.
    Néron S, Roy A, Dumont N, Dussault N (2011) Effective in vitro expansion of CD40-activated human B lymphocytes in a defined bovine protein-free medium. J Immunol Methods 371:61–69CrossRefPubMedGoogle Scholar
  16. 16.
    Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D (2015) Frequently asked question in hypoxia research. Hypoxia 3:35–43CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jez M, Rozman P, Ivanovic Z, Bas T (2015) Concise review: the role of oxygen in hematopoietic stem cell physiology. J Cell Physiol 230:1999–2005CrossRefPubMedGoogle Scholar
  20. 20.
    Newby D, Marks L, Lyall F (2005) Dissolved oxygen concentration in culture medium: assumptions and pitfalls. Placenta 26:353–357CrossRefPubMedGoogle Scholar
  21. 21.
    Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226CrossRefPubMedGoogle Scholar
  22. 22.
    Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR (1998) Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 34:61–70CrossRefPubMedGoogle Scholar
  23. 23.
    Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205CrossRefPubMedGoogle Scholar
  24. 24.
    Thibault L, Beausejour A, Jacques A, Ducas E, Tremblay M (2014) Overnight storage of whole blood: cooling and transporting blood at room temperature under extreme temperature conditions. Vox Sang 106:127–136CrossRefPubMedGoogle Scholar
  25. 25.
    Koizumi K, Sawada K, Sato N, Yamaguchi M, Nishio M, Tarumi T, Takano H, Fukada Y, Ieko M, Yasukouchi T, Sekiguchi S, Koike T (1999) Large scale purification of human blood CD34(+) cells using a nylon-fiber syringe system and immunomagnetic microspheres. Cytotherapy 1:319–327CrossRefPubMedGoogle Scholar
  26. 26.
    Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Peer D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marc Cloutier
    • 1
  • Christine Jobin
    • 1
    • 2
  • Carl Simard
    • 1
  • Sonia Néron
    • 1
    • 2
  1. 1.Recherche et DéveloppementHéma-QuébecQuébecCanada
  2. 2.Faculté des sciences et de génie, Biochimie, Microbiologie et Bio-informatiqueUniversité LavalQuébecCanada

Personalised recommendations