Advertisement

Analysis of Gene Expression Patterns Using Biclustering

  • Swarup RoyEmail author
  • Dhruba K. Bhattacharyya
  • Jugal K. Kalita
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1375)

Abstract

Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns.

Keywords:

Data mining Expression patterns Bi-clustering Microarray 

References

  1. 1.
    Kurella M, Hsiao L, Yoshida T, Randall J, Chow G, Sarang S, Jensen R, Gullans S (2001) Dna microarray analysis of complex biologic processes. J Am Soc Nephrol 12:1072–1078PubMedGoogle Scholar
  2. 2.
    Kraljevic S, Stambrook PJ, Pavelic K (2004) Accelerating drug discovery. EMBO Rep 5:837–842CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yu H, Luscombe N, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19:422–427CrossRefPubMedGoogle Scholar
  4. 4.
    Gasch A, Eisen M et al (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 3:1–22CrossRefGoogle Scholar
  5. 5.
    Tavazoie S, Hughes J, Campbell M, Cho R, Church G et al (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285CrossRefPubMedGoogle Scholar
  6. 6.
    Grant R (2004) Computational genomics: theory and application. Horizon Bioscience, CambridgeGoogle Scholar
  7. 7.
    Li J, Wong L (2001) Emerging patterns and gene expression data. Genome Inform Ser 12:3–13Google Scholar
  8. 8.
    Alberts B, Johnson A et al (2002) Studying gene expression and function. In: Molecular biology of the cell, 4th ednGoogle Scholar
  9. 9.
    Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M, Brown P, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6:281–297CrossRefPubMedGoogle Scholar
  11. 11.
    Chipman H, Hastie TJ, Tibshirani R (2003) Clustering microarray data. In: Statistical analysis of gene expression microarray data, vol 1. Chapman & Hall/CRC, Boca Raton, pp 159–200Google Scholar
  12. 12.
    Ahmed HA, Mahanta P, Bhattacharyya D, Kalita JK (2011) Gerc: tree based clustering for gene expression data. In: 2011 I.E. 11th international conference on bioinformatics and bioengineering (BIBE), IEEE, pp 299–302Google Scholar
  13. 13.
    Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn 39:2464–2477CrossRefGoogle Scholar
  14. 14.
    Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1:24–45CrossRefPubMedGoogle Scholar
  15. 15.
    Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Trans Knowl Discov Data (TKDD) 3:1CrossRefGoogle Scholar
  16. 16.
    Mahanta P, Ahmed H, Bhattacharyya D, Kalita JK (2011) Triclustering in gene expression data analysis: a selected survey. In: 2011 2nd national conference on emerging trends and applications in computer science (NCETACS), IEEE pp 1–6Google Scholar
  17. 17.
    Roy S, Bhattacharyya DK, Kalita JK (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinf 15:S10CrossRefGoogle Scholar
  18. 18.
    Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005) Expander—an integrative program suite for microarray data analysis. BMC Bioinf 6:232CrossRefGoogle Scholar
  19. 19.
    Barkow S, Bleuler S, Prelić A, Zimmermann P, Zitzler E (2006) Bicat: a biclustering analysis toolbox. Bioinformatics 22:1282–1283CrossRefPubMedGoogle Scholar
  20. 20.
    Gonçalves JP, Madeira SC, Oliveira AL (2009) Biggests: integrated environment for biclustering analysis of time series gene expression data. BMC Res Notes 2:124CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheng KO, Law NF, Siu WC, Lau T (2007) Bivisu: software tool for bicluster detection and visualization. Bioinformatics 23:2342–2344CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou F, Ma Q, Li G, Xu Y (2012) Qserver: a biclustering server for prediction and assessment of co-expressed gene clusters. PloS one 7:e32660CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Leung E, Bushel PR (2006) Page: phase-shifted analysis of gene expression. Bioinformatics 22:367–368CrossRefPubMedGoogle Scholar
  24. 24.
    Roy S, Bhattacharyya DK, Kalita JK (2013) Cobi: pattern based co-regulated biclustering of gene expression data. Pattern Recogn Lett 34:1669–1678CrossRefGoogle Scholar
  25. 25.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300Google Scholar
  26. 26.
    Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67:123–129CrossRefGoogle Scholar
  27. 27.
    Cheng Y, Church G (2000) Biclustering of expression data. In: Proceedings of 8th international conference on intelligent systems for molecular biology, ICISMB’00, vol 8, pp 93–103Google Scholar
  28. 28.
    Yang J, Wang H, Wang W, Yu P (2003) Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE symposium on bioinformatics and bioengineering, 2003, pp 321–327Google Scholar
  29. 29.
    Madeira S, Oliveira A (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1:24–45CrossRefGoogle Scholar
  30. 30.
    Banka H, Mitra S (2006) Evolutionary biclustering of gene expressions. Ubiquity 7:1–12CrossRefGoogle Scholar
  31. 31.
    Aguilar-Ruiz J (2005) Shifting and scaling patterns from gene expression data. Bioinformatics 21:3840–3845CrossRefPubMedGoogle Scholar
  32. 32.
    Nepomuceno J, Troncoso A, Aguilar-Ruiz J et al (2011) Biclustering of gene expression data by correlation-based scatter search. BioData Min 4:3CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pei J, Zhang X Cho M, Wang H, Yu P (2003) Maple: a fast algorithm for maximal pattern-based clustering. In: Proceedings of the 3rd IEEE international conference on data mining, 2003 (ICDM’03), IEEE, pp 259–266Google Scholar
  34. 34.
    Wang H, Chu F, Fan W, Yu P, Pei J (2004) A fast algorithm for subspace clustering by pattern similarity. In: Proceedings of the 16th international conference on scientific and statistical database management, 2004, IEEE, pp 51–60Google Scholar
  35. 35.
    Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:S136–S144CrossRefPubMedGoogle Scholar
  36. 36.
    Roy S, Bhattacharyya DK, Kalita JK (2012) Deterministic approach for biclustering of co-regulated genes from gene expression data. In: Proceedings of the 16th international conference on KES12, FAIA, vol 243, pp 490–499Google Scholar
  37. 37.
    Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV (2013) A comparative analysis of biclustering algorithms for gene expression data. Brief Bioinform 14:279–292Google Scholar
  38. 38.
    Wang H, Wang W, Yang J, Yu P (2002) Clustering by pattern similarity in large data sets. In: Proceedings of the international conference on management of data. ACM SIGMOD’02, ACM, pp 394–405Google Scholar
  39. 39.
    Zhao Y, Yu J, Wang G, Chen L, Wang B, Yu G (2008) Maximal subspace coregulated gene clustering. IEEE Trans Knowl Data Eng 20:83–98CrossRefGoogle Scholar
  40. 40.
    Prelić A, Bleuler S et al (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–1129CrossRefPubMedGoogle Scholar
  41. 41.
    Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6:281–297CrossRefPubMedGoogle Scholar
  42. 42.
    Ji L, Mock K, Tan K (2006) Quick hierarchical biclustering on microarray gene expression data. In: Proceedings of the 6th IEEE symposium on bioinformatics and bioengineering, 2006 (BIBE’06), IEEE, pp 110–120Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Swarup Roy
    • 1
    Email author
  • Dhruba K. Bhattacharyya
    • 2
  • Jugal K. Kalita
    • 3
  1. 1.North-Eastern Hill UniversityShillongIndia
  2. 2.Tezpur UniversityNapaamIndia
  3. 3.University of ColoradoColorado SpringUSA

Personalised recommendations