Skip to main content

Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1353))

Abstract

Induced pluripotent stem cells (iPSCs) offer great promise as tools for basic biomedical research, disease modeling, and drug screening. In this chapter, we describe the generation of patient-specific, transgene-free iPSCs from skin biopsies and peripheral blood mononuclear cells through electroporation of episomal vectors and growth under two different culture conditions. The resulting iPSC lines are characterized with respect to pluripotency marker expression through immunostaining, tested for transgene integration by PCR, and assayed for differentiation capacity via teratoma formation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  2. Park I-H, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Onder TT, Daley GQ (2012) New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22(5):500–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. González F, Boué S, Izpisúa Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 12:231–242

    Article  PubMed  Google Scholar 

  5. Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  PubMed  Google Scholar 

  6. Goh PA, Caxaria S, Casper C et al (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8:e81622

    Article  PubMed Central  PubMed  Google Scholar 

  7. Okita K, Yamakawa T, Matsumura Y et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Beers J, Gulbranson DR, George N et al (2012) Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat Protoc 7:2029–2040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3:595–605

    Article  CAS  PubMed  Google Scholar 

  11. Lensch MW, Schlaeger TM, Zon LI et al (2007) Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 1:253–258

    Article  CAS  PubMed  Google Scholar 

  12. Onder TT, Kara N, Cherry A et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen G, Gulbranson DR, Yu P et al (2012) Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30:623–630

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by a TUBITAK 3501 grant (212T095), EMBO installation grant 2543, and FP7 Marie Curie CIG 333918 CMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer T. Önder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fidan, K., Ebrahimi, A., Çağlayan, Ö.H., Özçimen, B., Önder, T.T. (2015). Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. In: Nagy, A., Turksen, K. (eds) Patient-Specific Induced Pluripotent Stem Cell Models. Methods in Molecular Biology, vol 1353. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_278

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_278

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3033-3

  • Online ISBN: 978-1-4939-3034-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics