Skip to main content

Intracellular Calcium Measurements for Functional Characterization of Neuronal Phenotypes

Part of the Methods in Molecular Biology book series (MIMB,volume 1341)

Abstract

The central and peripheral nervous system is built by a network of many different neuronal phenotypes together with glial and other supporting cells. The repertoire of expressed receptors and secreted neurotransmitters and neuromodulators are unique for each single neuron leading to intracellular signaling cascades, many of them involving intracellular calcium signaling. Here we suggest the use of calcium signaling analysis upon specific agonist application to reliably identify neuronal phenotypes, being important not only for basic science, but also providing a reliable tool for functional characterization of cells prior to transplantation. Calcium imaging provides various cellular information including signaling amplitudes, cell localization, duration, and frequency. Microfluorimetry reveals a signal summarizing the entire population, and its use is indicated for high-throughput screening purposes.

Keywords

  • Neuron
  • Differentiation
  • Stem cell
  • Calcium signaling
  • Phenotype
  • Neuronal receptors

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/7651_2015_271
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2954-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gaspard N, Vanderhaeghen P (2010) Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 20:37–43

    CAS  CrossRef  PubMed  Google Scholar 

  2. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    CAS  CrossRef  PubMed  Google Scholar 

  3. Calloni R, Cordero EA, Henriques JA et al (2013) Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 22:1455–1476

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  4. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  CrossRef  PubMed  Google Scholar 

  5. Vanaman T, Carafoli E (2012) Introduction to thematic minireview series on calcium. J Biol Chem 287:31623

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  6. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87

    CAS  CrossRef  PubMed  Google Scholar 

  7. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    CAS  CrossRef  PubMed  Google Scholar 

  8. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    CAS  CrossRef  PubMed  Google Scholar 

  9. Buonanno A, Fields RD (1999) Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr Opin Neurobiol 9:110–120

    CAS  CrossRef  PubMed  Google Scholar 

  10. Lin JH, Takano T, Arcuino G et al (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  11. Spitzer NC, Lautermilch NJ, Smith RD et al (2000) Coding of neuronal differentiation by calcium transients. Bioessays 22:811–817

    CAS  CrossRef  PubMed  Google Scholar 

  12. Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375:784–787

    CAS  CrossRef  PubMed  Google Scholar 

  13. Simpson PB, Challiss RA, Nahorski SR (1995) Neuronal Ca2+ stores: activation and function. Trends Neurosci 18:299–306

    CAS  CrossRef  PubMed  Google Scholar 

  14. Strubing C, Ahnert-Hilger G, Shan J et al (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 53:275–287

    CAS  CrossRef  PubMed  Google Scholar 

  15. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    CAS  CrossRef  PubMed  Google Scholar 

  16. Abranches E, Silva M, Pradier L et al (2009) Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS One 4:e6286

    PubMed Central  CrossRef  PubMed  Google Scholar 

  17. Salti A, Nat R, Neto S et al (2013) Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons. Stem Cells Dev 22:397–411

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  18. Bibel M, Richter J, Lacroix E et al (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2:1034–1043

    CAS  CrossRef  PubMed  Google Scholar 

  19. Wichterle H, Lieberam I, Porter JA et al (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    CAS  CrossRef  PubMed  Google Scholar 

  20. Lau T, Schneidt T, Heimann F et al (2010) Somatodendritic serotonin release and re-uptake in mouse embryonic stem cell-derived serotonergic neurons. Neurochem Int 57:969–978

    CAS  CrossRef  PubMed  Google Scholar 

  21. Maisano X, Litvina E, Tagliatela S et al (2012) Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 32:46–61

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Brazilian funding agencies Sao Paulo Research Foundation (FAPESP), National Council for Scientific and Technological Development (CNPq), and Provost’s Office for Research of the University of São Paulo, Grant number: 2011.1.9333.1.3 (NAPNA-USP), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Glaser, T., Castillo, A.R.G., Oliveira, Á., Ulrich, H. (2015). Intracellular Calcium Measurements for Functional Characterization of Neuronal Phenotypes. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_271

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_271

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols