Skip to main content

Integrating Microarray Data and GRNs

  • Protocol
  • First Online:
Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1375))

Abstract

With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus—GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes—KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.

Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.kegg.jp/kegg/xml/

  2. 2.

    http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse7390

  3. 3.

    http://www.cytoscape.org/

References

  1. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    Article  CAS  PubMed  Google Scholar 

  2. Huang Y, Zhao Z, Xu H, Shyr Y, Zhang B (2012) Advances in systems biology: computational algorithms and applications. BMC Syst Biol 6(3)

    Google Scholar 

  3. Hung J-H, Yang T-H, Zhenjun H, Weng Z, DeLisi C (2012) Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform 13(3):281–291

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heckera M, Lambecka S, Toepferb S, van Somerenc E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103

    Article  Google Scholar 

  5. Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21(2):171–178

    Article  CAS  PubMed  Google Scholar 

  6. Iwamoto T, Pusztai L (2010) Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data? Genome Med 2(11):81

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shannon CEA (1948) Mathematical theory of communication. Bell Sys Tech J 27(3):379–423

    Article  Google Scholar 

  8. Potamias G, Koumakis L, Moustakis V (2004) Gene selection via discretized gene-expression profiles and greedy feature-elimination. Meth Appl Artif Intelligence 3025:256–266

    Article  Google Scholar 

  9. Li L, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17(12):1131–1142

    Article  CAS  PubMed  Google Scholar 

  10. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  Google Scholar 

  11. Ott MA, Gert V (2006) Correcting ligands, metabolites, and pathways. BMC Bioinformatics 7(1):517

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khatri P, Draghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  14. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Ian H (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1)

    Google Scholar 

  15. Sutherland RL (2011) Endocrine resistance in breast cancer: new roles for ErbB3 and ErbB4. Breast Cancer Res 13(3):106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hutcheson IR et al (2007) Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res 9(4):50

    Article  Google Scholar 

  17. Geistlinger L, Csaba G, Küffner R, Mulde N, Zimmer R (2011) From sets to graphs towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics 27(13):366–373

    Article  Google Scholar 

  18. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: Topology Enrichment Analysis frameworK for detecting activated biological subpathways. Nucleic Acids Res 41(1):1425–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nam S, Chang HR, Kim KT et al (2014) PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 33(41):4941–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement N° 270089 and by the European Union (European Social Fund—ESF) and by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Koumakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koumakis, L., Potamias, G., Tsiknakis, M., Zervakis, M., Moustakis, V. (2015). Integrating Microarray Data and GRNs. In: Guzzi, P. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 1375. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_252

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_252

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3172-9

  • Online ISBN: 978-1-4939-3173-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics