MetaMirClust: Discovery and Exploration of Evolutionarily Conserved miRNA Clusters

  • Wen-Ching ChanEmail author
  • Wen-chang Lin
Part of the Methods in Molecular Biology book series (MIMB, volume 1375)


Recent emerging studies suggest that a substantial fraction of microRNA (miRNA) genes is likely to form clusters in terms of evolutionary conservation and biological implications, posing a significant challenge for the research community and shifting the bottleneck of scientific discovery from miRNA singletons to miRNA clusters. In addition, the advance in molecular sequencing technique such as next-generation sequencing (NGS) has facilitated researchers to comprehensively characterize miRNAs with low abundance on genome-wide scale in multiple species. Taken together, a large scale, cross-species survey of grouped miRNAs based on genomic location would be valuable for investigating their biological functions and regulations in an evolutionary perspective. In the present chapter, we describe the application of effective and efficient bioinformatics tools on the identification of clustered miRNAs and illustrate how to use the recently developed Web-based database, MetaMirClust ( to discover evolutionarily conserved pattern of miRNA clusters across metazoans.


MetaMirClust microRNA cluster Data mining Synteny 


  1. 1.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  3. 3.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531CrossRefPubMedGoogle Scholar
  4. 4.
    Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906CrossRefPubMedGoogle Scholar
  7. 7.
    Tsai KW et al (2010) Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 49(11):969–980CrossRefPubMedGoogle Scholar
  8. 8.
    Tsai KW et al (2011) Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics 6(10):1189–1197CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tsai KW et al (2012) Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer 51(4):394–401CrossRefPubMedGoogle Scholar
  10. 10.
    Tsai KW et al (2011) Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 129(11):2600–2610CrossRefPubMedGoogle Scholar
  11. 11.
    Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860CrossRefPubMedGoogle Scholar
  12. 12.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li SC et al (2010) Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics 11(Suppl 4):S8CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li SC et al (2010) Identification of homologous microRNAs in 56 animal genomes. Genomics 96(1):1–9CrossRefPubMedGoogle Scholar
  15. 15.
    Wu HH, Lin WC, Tsai KW (2014) Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med 16:e1CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Altuvia Y et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yu J et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68CrossRefPubMedGoogle Scholar
  18. 18.
    Sewer A et al (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hertel J et al (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chan WC et al (2012) MetaMirClust: discovery of miRNA cluster patterns using a data-mining approach. Genomics 100(3):141–148CrossRefPubMedGoogle Scholar
  21. 21.
    Mathelier A, Carbone A (2013) Large scale chromosomal mapping of human microRNA structural clusters. Nucleic Acids Res 41(8):4392–4408CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335CrossRefPubMedGoogle Scholar
  23. 23.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866CrossRefPubMedGoogle Scholar
  24. 24.
    Laddha SV et al (2013) Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biol Direct 8:10CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Itesako T et al (2014) The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster. PLoS One 9(2):e84311CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632CrossRefPubMedGoogle Scholar
  27. 27.
    Yoshino H et al (2013) Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci 104(12):1567–1574CrossRefPubMedGoogle Scholar
  28. 28.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y, Zhang R, Su B (2009) Diversity and evolution of MicroRNA gene clusters. Sci China C Life Sci 52(3):261–266CrossRefPubMedGoogle Scholar
  30. 30.
    Han JW et al (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87CrossRefGoogle Scholar
  31. 31.
    Chen L, Liu W (2013) Frequent patterns mining in multiple biological sequences. Comput Biol Med 43(10):1444–1452CrossRefPubMedGoogle Scholar
  32. 32.
    Megraw M et al (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35(Database issue):D149–D155CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lai EC et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4(7):R42CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lagos-Quintana M et al (2003) New microRNAs from mouse and human. RNA 9(2):175–179CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Berezikov E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24CrossRefPubMedGoogle Scholar
  36. 36.
    Alexiou P et al (2010) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38(Database issue):D137–D141CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–73CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Kaohsiung Chang Gung Memorial HospitalKaohsiungRepublic of China
  2. 2.Institute of Biomedical Sciences, Academia SinicaTaipeiRepublic of China
  3. 3.Institute of Plant and Microbial Biology, Academia SinicaTaipeiRepublic of China

Personalised recommendations