Skip to main content

Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1212))

Abstract

In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell–cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer’s disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presentingVesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  2. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4:594–660

    Article  CAS  PubMed  Google Scholar 

  3. Katsuda T, Kosaka N, Ochiya T (2014) The roles of extracellular vesicles in cancer biology: towards the development of novel cancer biomarkers. Proteomics 14:412–425

    Article  CAS  PubMed  Google Scholar 

  4. Biancone L, Bruno S, Deregibus MC et al (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042

    Article  CAS  PubMed  Google Scholar 

  5. Katsuda T, Kosaka N, Takeshita F et al (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13:1637–1653

    Article  CAS  PubMed  Google Scholar 

  6. Katsuda T, Ikeda S, Yoshioka Y et al (2014) Physiological and pathological relevance of secretory microRNAs and a perspective on their clinical application. Biol Chem 395:365–373

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain G, Fox J, Ashton B et al (2007) Concise review:mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  8. Djouad F, Bouffi C, Ghannam S et al (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5:392–399

    Article  CAS  PubMed  Google Scholar 

  9. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Psaltis PJ, Zannettino ACW, Worthley SG et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210

    Article  PubMed  Google Scholar 

  11. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  13. Bruno S, Grange C, Collino F et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7:e33115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. He J, Wang Y, Sun S et al (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500

    Article  Google Scholar 

  15. Zhou Y, Xu H, Xu W et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  17. Lai RC, Arslan F, Tan SS et al (2010) Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J Mol Cell Cardiol 48:1215–1224

    Article  CAS  PubMed  Google Scholar 

  18. Arslan F, Lai RC, Smeets MB et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    Article  CAS  PubMed  Google Scholar 

  19. Xin H, Li Y, Buller B et al (2012) Exosome mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xin H, Li Y, Liu Z et al (2013) Mir-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31:2737–2746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Xin H, Li Y, Cui Y et al (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee C, Mitsialis SA, Aslam M et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhu Y, Feng X, Abbott J et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin‐induced acute lung injury in mice. Stem Cells 32:116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    Article  PubMed Central  PubMed  Google Scholar 

  26. Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid-beta peptide and Alzheimer’s disease. Pharmacol Ther 108:129–148

    Article  CAS  PubMed  Google Scholar 

  27. Miners JS, Verbeek MM, Rikkert MO et al (2008) Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissuehomogenates and cerebrospinal fluid. J Neurosci Methods 167:229–236

    Article  CAS  PubMed  Google Scholar 

  28. Shirotani K, Tsubuki S, Iwata N et al (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276:21895–21901

    Article  CAS  PubMed  Google Scholar 

  29. Banas A (2012) Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells. Methods Mol Biol 826:61–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for the Comprehensive Research and Development of a Surgical Instrument for the Early Detection and Rapid Curing of Cancer Project (P10003) of the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ochiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Katsuda, T., Oki, K., Ochiya, T. (2014). Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics. In: Turksen, K. (eds) Stem Cell Renewal and Cell-Cell Communication. Methods in Molecular Biology, vol 1212. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_98

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_98

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2589-6

  • Online ISBN: 978-1-4939-2590-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics