Skip to main content

Pulse Field Gel Electrophoresis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1373))

Abstract

Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   80.24
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   100.21
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blanc DS (2004) The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. Infect Genet Evol 4:193–197

    Article  CAS  PubMed  Google Scholar 

  2. Blanc DS, Petignat C, Wenger A et al (2007) Changing molecular epidemiology of methicillin-resistant Staphylococcus aureus in a small geographic area over an eight-year period. J Clin Microbiol 45:3729–3736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Enright MC, Day NP, Davies CE et al (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Koreen L, Ramaswamy SV, Graviss EA et al (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mwangi MM, Wu SW, Zhou Y et al (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104:9451–9456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Trindade PA, McCulloch JA, Oliveira GA et al (2003) Molecular techniques for MRSA typing: current issues and perspectives. Braz J Infect Dis 7:32–43

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira DC, de Lencastre H (2002) Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46:2155–2161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zhang K, McClure JA, Elsayed S et al (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026–5033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Struelens MJ, Hawkey PM, French GL et al (2009) Laboratory tools and strategies for methicillin-resistant Staphylococcus aureus screening, surveillance and typing: state of the art and unmet needs. Clin Microbiol Infect 15:112–119

    Article  CAS  PubMed  Google Scholar 

  10. Hidron AI, Edwards JR, Patel J et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011

    Article  PubMed  Google Scholar 

  11. Baddour LM, Wilson WR, Bayer AS et al (2005) Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 111:e394–e434

    Article  PubMed  Google Scholar 

  12. Wang A, Athan E, Pappas PA et al (2007) Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA 297:1354–1361

    Article  CAS  PubMed  Google Scholar 

  13. Fluit AC, Jones ME, Schmitz FJ et al (2000) Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis 30:454–460

    Article  CAS  PubMed  Google Scholar 

  14. Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  15. Fowler VG Jr, Miro JM, Hoen B et al (2005) Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 293:3012–3021

    Article  CAS  PubMed  Google Scholar 

  16. Miro JM, Anguera I, Cabell CH et al (2005) Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 41:507–514

    Article  PubMed  Google Scholar 

  17. CDC (2013) Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  18. Bannerman TL, Hancock GA, Tenover FC et al (1995) Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol 33:551–555

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  CAS  PubMed  Google Scholar 

  20. Prevost G, Jaulhac B, Piemont Y (1992) DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol 30:967–973

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Matushek MG, Bonten MJ, Hayden MK (1996) Rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. J Clin Microbiol 34:2598–2600

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Reed KD, Stemper ME, Shukla SK (2007) Pulsed-field gel electrophoresis of MRSA. Methods Mol Biol 391:59–69

    Article  CAS  PubMed  Google Scholar 

  23. Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vance G. Fowler Jr. M.D., M.H.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sharma-Kuinkel, B.K., Rude, T.H., Fowler, V.G. (2014). Pulse Field Gel Electrophoresis. In: Bose, J. (eds) The Genetic Manipulation of Staphylococci. Methods in Molecular Biology, vol 1373. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_191

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_191

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3157-6

  • Online ISBN: 978-1-4939-3158-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics