In Vitro Modeling of Alcohol-Induced Liver Injury Using Human-Induced Pluripotent Stem Cells

  • Lipeng Tian
  • Neha Prasad
  • Yoon-Young JangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1353)


Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world, currently, there are no effective strategies that can prevent or treat alcoholic liver disease (ALD), due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here, we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs, in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers, we measured several key cellular parameters of hepatocyte injury, including apoptosis, proliferation, and lipid accumulation.


Induced pluripotent stem cells Alcoholic liver disease Hepatic differentiation Liver steatosis Apoptosis 



This work was supported in part by grants from Maryland Stem Cell Research Funds (2010-MSCRFII-0101 and 2013-MSCRFII-0170 and 2014-MSCRFF-0655) and by NIH (R43 ES023514, R21AA020020).


  1. 1.
    Daldrup-Link HE, Nejadnik H (2014) MR imaging of stem cell transplants in arthritic joints. J Stem Cell Res Ther 4(2):165. doi: 10.4172/2157-7633.1000165 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Altamirano J, Bataller R (2011) Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 8(9):491–501. doi: 10.1038/nrgastro.2011.134 CrossRefPubMedGoogle Scholar
  3. 3.
    Tilg H, Day CP (2007) Management strategies in alcoholic liver disease. Nat Clin Pract Gastroenterol Hepatol 4(1):24–34. doi: 10.1038/ncpgasthep0683 CrossRefPubMedGoogle Scholar
  4. 4.
    Hofer R, Burd L (2009) Review of published studies of kidney, liver, and gastrointestinal birth defects in fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol 85(3):179–183. doi: 10.1002/bdra.20562 CrossRefPubMedGoogle Scholar
  5. 5.
    Lefkowitch JH, Rushton AR, Feng-Chen KC (1983) Hepatic fibrosis in fetal alcohol syndrome. Pathologic similarities to adult alcoholic liver disease. Gastroenterology 85(4):951–957PubMedGoogle Scholar
  6. 6.
    Buts JP, Sokal EM, Van Hoof F (1992) Prenatal exposure to ethanol in rats: effects on postnatal maturation of the small intestine and liver. Pediatr Res 32(5):574–579. doi: 10.1203/00006450-199211000-00018 CrossRefPubMedGoogle Scholar
  7. 7.
    Kockaya EA, Akay MT (2006) Histological changes in the liver of fetuses of alcohol-treated pregnant rats. Cell Biochem Funct 24(3):223–227. doi: 10.1002/cbf.1215 CrossRefPubMedGoogle Scholar
  8. 8.
    Bataller R, North KE, Brenner DA (2003) Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37(3):493–503. doi: 10.1053/jhep.2003.50127 CrossRefPubMedGoogle Scholar
  9. 9.
    Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585. doi: 10.1053/j.gastro.2011.09.002 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Neff GW, Duncan CW, Schiff ER (2011) The current economic burden of cirrhosis. Gastroenterol Hepatol 7(10):661–671Google Scholar
  11. 11.
    Siegmund SV, Dooley S, Brenner DA (2005) Molecular mechanisms of alcohol-induced hepatic fibrosis. Dig Dis 23(3–4):264–274. doi: 10.1159/000090174 CrossRefPubMedGoogle Scholar
  12. 12.
    Weber SN, Wasmuth HE (2010) Liver fibrosis: from animal models to mapping of human risk variants. Best Pract Res Clin Gastroenterol 24(5):635–646. doi: 10.1016/j.bpg.2010.07.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Choi SM, Liu H, Chaudhari P, Kim Y, Cheng L, Feng J, Sharkis S, Ye Z, Jang YY (2011) Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 118(7):1801–1805. doi: 10.1182/blood-2011-03-340620 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY (2011) In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med 3(82):82ra39. doi: 10.1126/scitranslmed.3002376 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810–1819. doi: 10.1002/hep.23626 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi: 10.1126/science.1151526 CrossRefPubMedGoogle Scholar
  17. 17.
    Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57(6):2458–2468. doi: 10.1002/hep.26237 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang YY (2011) Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle 10(15):2423–2427PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Dolganiuc A, Szabo G (2009) In vitro and in vivo models of acute alcohol exposure. World J Gastroenterol 15(10):1168–1177PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Szabo G, Mandrekar P (2008) Human monocytes, macrophages, and dendritic cells: alcohol treatment methods. Methods Mol Biol 447:113–124. doi: 10.1007/978-1-59745-242-7_9 CrossRefPubMedGoogle Scholar
  21. 21.
    Miranda RC, Santillano DR, Camarillo C, Dohrman D (2008) Modeling the impact of alcohol on cortical development in a dish: strategies from mapping neural stem cell fate. Methods Mol Biol 447:151–168. doi: 10.1007/978-1-59745-242-7_12 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Cellular and Molecular Medicine Graduate ProgramJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of Oncology, The Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations