Advertisement

Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling

  • Renuka Sivapatham
  • Xianmin ZengEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1353)

Abstract

One major hurdle to the development of effective treatments to many diseases is the lack of suitable human model systems. The ability to reprogram human somatic cells to induced pluripotent stem cells (iPSC) offers an excellent opportunity to generate human disease models with primary cells. Currently, several methods to generate iPSC lines exist, and iPSC can be generated from various tissue sources including skin fibroblasts, blood, hair follicles, dental tissue, and urine. In this chapter we describe the generation and characterization of iPSC from blood or fibroblast on a routine base and focus on the integration-free methodologies.

Keywords

iPSC Integration-free Disease modeling Parkinson’s disease 

References

  1. 1.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  2. 2.
    Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181. doi: 10.1038/nbt1335 CrossRefPubMedGoogle Scholar
  3. 3.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. doi: 10.1126/science.1162494 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Liu Q, Pedersen OZ, Peng J, Couture LA, Rao MS, Zeng X (2013) Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy 15(8):999–1010. doi: 10.1016/j.jcyt.2013.03.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364. doi: 10.1016/j.mcn.2013.07.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3(5):475–479. doi: 10.1016/j.stem.2008.10.002, S1934-5909(08)00525-0 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275. doi: 10.1038/nbt.1502, nbt.1502 [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775. doi: 10.1038/nature07864, nature07864 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199. doi: 10.1038/nmeth.1426, nmeth.1426 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362, JST.JSTAGE/pjab/85.348 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529. doi: 10.1038/cr.2011.12, cr201112 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74(14):6564–6569PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Jin ZB, Okamoto S, Xiang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1(6):503–509. doi: 10.5966/sctm. 2012-0005, sctm.2012-0005 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ono M, Hamada Y, Horiuchi Y, Matsuo-Takasaki M, Imoto Y, Satomi K, Arinami T, Hasegawa M, Fujioka T, Nakamura Y, Noguchi E (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7(8):e42855. doi: 10.1371/journal.pone.0042855, PONE-D-12-10273 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. doi: 10.1126/science.1172482, 1172482 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefPubMedGoogle Scholar
  17. 17.
    Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, Rohaizak M, Fuad I, A Jamal AR, Zarina AL, Nor Aina E, Normayah K, Nor Hisham A (2010) Identification of novel large genomic rearrangements at the BRCA1 locus in Malaysian women with breast cancer. Cancer Epidemiol 34(4):442–447. doi: 10.1016/j.canep.2010.04.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Buck Institute for Research on AgingNovatoUSA

Personalised recommendations