Advertisement

Derivation of GMP-Compliant Integration-Free hiPSCs Using Modified mRNAs

  • Jens Durruthy Durruthy
  • Vittorio Sebastiano
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1283)

Abstract

The clinical use of human induced pluripotent stem cells (hiPSCs) and the development of patients-specific gene and cell therapies rely on the development of fast, reliable, and integration-free methods of derivation of pluripotent stem cells from somatic tissues. Here we describe an integration-free protocol for the rapid derivation of hiPSCs from dermal fibroblasts using modified mRNAs. This method is inexpensive, highly efficient, and makes use of reagents that are xeno-free and chemically defined and can therefore be adopted by any Good Manufacturing Practice (GMP) facility.

Keywords:

Xeno-free hiPSCs GMP Clinical use Modified mRNA Regenerative medicine Cell therapy Gene therapy 

References

  1. 1.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  2. 2.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419CrossRefPubMedGoogle Scholar
  3. 3.
    Dowey SN, Huang X, Chou BK, Ye Z, Cheng L (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7:2013–2021CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Jia F, Wilson KD, Sun N, Gupta DM, Huang M et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Cho HJ, Lee CS, Kwon YW, Paek JS, Lee SH et al (2010) Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116:386–395CrossRefPubMedGoogle Scholar
  6. 6.
    Merling RK, Sweeney CL, Choi U, De Ravin SS, Myers TG et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241CrossRefPubMedGoogle Scholar
  8. 8.
    Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J et al (2014) Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet 23:3071–3084CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jens Durruthy Durruthy
    • 1
    • 2
  • Vittorio Sebastiano
    • 1
    • 2
  1. 1.Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and GynecologyStanford UniversityStanfordUSA
  2. 2.Institute for Stem Cell Biology and Regenerative Medicine, Department of GeneticsStanford UniversityStanfordUSA

Personalised recommendations