Skip to main content

cGMP-Compliant Transportation Conditions for a Prompt Therapeutic Use of Marrow Mesenchymal Stromal/Stem Cells

  • Protocol
  • First Online:
Stem Cells and Good Manufacturing Practices

Abstract

We recently described conditions for safe 18-h manufacturer-to-patient transportation of freshly harvested hBM-MSC expanded under cGMP protocols using human platelet lysate (hPL), that allowed prompt use as an advanced therapeutic medicinal product. Here we outline important considerations when comparing different transportation conditions, highlighting that although cell transportation may involve a reduction in viability, this did not undermine the ultimate bone-forming regenerative potential of the cGMP-hBM-MSC population.

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fennema EM, Renard AJ, Leusink A et al (2009) The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthop 80:618–621

    Article  PubMed Central  PubMed  Google Scholar 

  2. Fekete N, Rojewski MT, Furst D et al (2012) GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 7:e43255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Seeger FH, Tonn T, Krzossok N et al (2007) Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 28:766–772

    Article  PubMed  Google Scholar 

  4. Fekete N, Rojewski MT, Lotfi R et al (2014) Essential components for ex vivo proliferation of mesenchymal stromal cells. Tissue Eng Part C Methods 20:129–139

    Article  CAS  PubMed  Google Scholar 

  5. EDITORIAL (2011) European medicines agency, CAT secretariat & US food and drug administration. Regen Med 6:90–96

    Article  Google Scholar 

  6. Trounson A, DeWitt ND, Feigal EG (2012) The alpha stem cell clinic: a model for evaluating and delivering stem cell-based therapies. Stem Cells Transl Med 1:9–14

    Article  PubMed Central  PubMed  Google Scholar 

  7. Eaker S, Armant M, Brandwein H et al (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2:871–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Olson WC, Smolkin ME, Farris EM et al (2011) Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function. J Transl Med 9:26

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hahn S, Sireis W, Hourfar K et al (2014) Effects of storage temperature on hematopoietic stability and microbial safety of BM aspirates. Bone Marrow Transplant 49:338–348

    Article  CAS  PubMed  Google Scholar 

  10. Jansen J, Nolan PL, Reeves MI et al (2009) Transportation of peripheral blood progenitor cell products: effects of time, temperature and cell concentration. Cytotherapy 11:79–85

    Article  CAS  PubMed  Google Scholar 

  11. Sensebe L, Krampera M, Schrezenmeier H et al (2010) Mesenchymal stem cells for clinical application. Vox Sang 98:93–107

    Article  CAS  PubMed  Google Scholar 

  12. Shen JL, Huang YZ, Xu SX et al (2012) Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23–25 years. Cryobiology 64:167–175

    Article  CAS  PubMed  Google Scholar 

  13. Matsumura K, Hayashi F, Nagashima T et al (2013) Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed 24:1484–1497

    Article  CAS  PubMed  Google Scholar 

  14. Francois M, Copland IB, Yuan S et al (2012) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy 14:147–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yang L, Cheng F, Liu T et al (2012) Comparison of mesenchymal stem cells released from poly(N-isopropylacrylamide) copolymer film and by trypsinization. Biomed Mater 7:035003

    Article  PubMed  Google Scholar 

  16. Weiss S, Scammell K, Levin E et al (2012) In vitro platelet quality in storage containers used for pediatric transfusions. Transfusion 52:1703–1714

    Article  CAS  PubMed  Google Scholar 

  17. Lane TA, Garls D, Mackintosh E et al (2009) Liquid storage of marrow stromal cells. Transfusion 49:1471–1481

    Article  CAS  PubMed  Google Scholar 

  18. Veronesi E, Murgia A, Caselli A et al (2014) Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Eng Part C Methods 20:239–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ahmadbeigi N, Soleimani M, Babaeijandaghi F et al (2012) The aggregate nature of human mesenchymal stromal cells in native bone marrow. Cytotherapy 14:917–924

    Article  CAS  PubMed  Google Scholar 

  20. Rasini V, Dominici M, Kluba T et al (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15:292–306

    Article  CAS  PubMed  Google Scholar 

  21. Bayoussef Z, Dixon JE, Stolnik S et al (2012) Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med 6:e61–e73

    Article  CAS  PubMed  Google Scholar 

  22. Maisonneuve BG, Roux DC, Thorn P et al (2013) Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions. Biomacromolecules 14:4388–4397

    Article  CAS  PubMed  Google Scholar 

  23. Mamidi MK, Singh G, Husin JM et al (2012) Impact of passing mesenchymal stem cells through smaller bore size needles for subsequent use in patients for clinical or cosmetic indications. J Transl Med 10:229

    Article  PubMed Central  PubMed  Google Scholar 

  24. Thibault RA, Mikos AG, Kasper FK (2013) Winner of the 2013 young investigator award for the society for biomaterials annual meeting and exposition, April 10–13, 2013, Boston. Massachusetts osteogenic differentiation of mesenchymal stem cells on demineralized and devitalized biodegradable polymer and extracellular matrix hybrid constructs. J Biomed Mater Res A 101:1225–1236

    Article  PubMed Central  PubMed  Google Scholar 

  25. Muraki K, Hirose M, Kotobuki N et al (2006) Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue Eng 12:1711–1719

    Article  CAS  PubMed  Google Scholar 

  26. Pal R, Hanwate M, Totey SM (2008) Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J Tissue Eng Regen Med 2:436–444

    Article  CAS  PubMed  Google Scholar 

  27. Galvez-Martin P, Hmadcha A, Soria B et al (2013) Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. Eur J Pharm Biopharm 86:459–468. doi:10.1016/j.ejpb.2013.11.002

    Article  PubMed  Google Scholar 

  28. Turner N, Laws A, Roberts L (2011) Assessing the effectiveness of cold chain management for childhood vaccines. J Prim Health Care 3:278–282

    PubMed  Google Scholar 

  29. Nikolaev NI, Liu Y, Hussein H et al (2012) The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation. J R Soc Interface 9:2503–2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284

    Article  CAS  PubMed  Google Scholar 

  31. Nightingale H, Kemp K, Gray E et al (2012) Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev 21:2026–2035

    Article  CAS  PubMed  Google Scholar 

  32. Ma EP, Liu XZ, Liu MD et al (1998) The effect of superoxide dismutase on the recovery of human bone marrow hemopoietic stem cells stored at 4 degreesC. Cryobiology 37:372–375

    Article  CAS  PubMed  Google Scholar 

  33. Ginis I, Grinblat B, Shirvan MH (2012) Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 18:453–463

    Article  CAS  PubMed  Google Scholar 

  34. Mathew AJ, Baust JM, Van Buskirk RG et al (2004) Cell preservation in reparative and regenerative medicine: evolution of individualized solution composition. Tissue Eng 10:1662–1671

    Article  CAS  PubMed  Google Scholar 

  35. Corwin WL, Baust JM, Baust JG et al (2014) Characterization and modulation of human mesenchymal stem cell stress pathway response following hypothermic storage. Cryobiology 68:215–226. doi:10.1016/j.cryobiol.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  36. Haider HK, Ashraf M (2010) Preconditioning and stem cell survival. J Cardiovasc Transl Res 3:89–102

    Article  PubMed  Google Scholar 

  37. Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4:76–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Chang CP, Chio CC, Cheong CU et al (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 124:165–176

    Article  CAS  Google Scholar 

  39. Hsiao ST, Dilley RJ, Dusting GJ et al (2014) Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 142(2):141–153

    Article  CAS  PubMed  Google Scholar 

  40. Fekete N, Gadelorge M, Furst D et al (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 14:540–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the members of the European consortium REBORNE in providing the cGMP grade cells used to set up the protocol, in particular to Rosaria Giordano, Philippe Burin, and Hubert Schrezenmeier. We thank Biomatlante that provided the MBCP+â„¢ scaffolds. This work was supported by a grant (HEALTH-2009-1.4.2-241879) from the 7th Framework Programme of the European Commission REBORNE (REgenerating BOne defects using New biomedical Engineering approaches).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Dominici M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Veronesi, E. et al. (2014). cGMP-Compliant Transportation Conditions for a Prompt Therapeutic Use of Marrow Mesenchymal Stromal/Stem Cells. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 1283. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_105

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_105

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2434-9

  • Online ISBN: 978-1-4939-2435-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics