Advertisement

CRISPR-Cas12a-Assisted Recombineering in Yersinia pestis

  • Juping Zhao
  • Yicheng Sun
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Recombineering is an efficient in vivo genetic engineering method that is used in bacteria. CRISPR-Cas12a, a new type of the CRISPR-Cas system, can be used to assist recombineering in bacteria. CRISPR-Cas12a-assisted recombineering allows for the precise genetic manipulation of the bacterial chromosome using double- and single-stranded linear DNA substrates. Here we describe how to use CRISPR-Cas12a-assisted recombineering methods to create gene knockouts, deletions, insertions, and point mutations in Yersinia pestis.

Key words

CRISPR-Cas Recombineering Yersinia pestis 

References

  1. 1.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128CrossRefPubMedGoogle Scholar
  2. 2.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152CrossRefPubMedGoogle Scholar
  4. 4.
    Malaga W, Perez E, Guilhot C (2003) Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219(2):261–268CrossRefPubMedGoogle Scholar
  5. 5.
    Song H, Niederweis M (2007) Functional expression of the Flp recombinase in Mycobacterium bovis BCG. Gene 399(2):112–119CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shenkerman Y, Elharar Y, Vishkautzan M, Gur E (2014) Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Gene 533(1):374–378CrossRefPubMedGoogle Scholar
  7. 7.
    Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55–61CrossRefPubMedGoogle Scholar
  8. 8.
    Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science (New York, NY) 353(6299):aad5147CrossRefGoogle Scholar
  9. 9.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521CrossRefPubMedGoogle Scholar
  12. 12.
    Nayak DD, Metcalf WW (2017) Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci U S A 114(11):2976–2981CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J (2016) Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol 34(7):575–587CrossRefPubMedGoogle Scholar
  14. 14.
    Barrangou R, van Pijkeren JP (2016) Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr Opin Biotechnol 37:61–68CrossRefPubMedGoogle Scholar
  15. 15.
    Luo ML, Leenay RT, Beisel CL (2016) Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 113(5):930–943CrossRefPubMedGoogle Scholar
  16. 16.
    Yan M-Y, Yan H-Q, Ren G-X, Zhao J-P, Guo X-P, Sun Y-C (2017) CRISPR-Cas12a–assisted recombineering in bacteria. Appl Environ MicrobiolCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grigoriev A (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26(10):2286–2290CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations