Skip to main content

Purification of Hfq-Associated RNAs with RNA Immunoprecipitation (RIP)

  • Protocol
  • First Online:
  • 527 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The RNA-binding protein Hfq is considered a central hub of small RNA (sRNA)-mediated regulation and is essential for the bacterial physiology and pathogenesis. It generally forms a homohexameric ring complex containing RNA-binding sites. Hfq is implicated in the pathogenesis of Yersinia pestis. The identification of Hfq-binding RNA species in vivo is critical for understanding their functions and determining their modes of interaction. The RNA immunoprecipitation (RIP) technique has been used to identify a large number of Hfq-associated RNA species, and can be effectively used to detect Hfq-bound RNAs in vivo, which can be subsequently analyzed with Northern blotting, quantitative PCR, microarray analysis, or deep sequencing. Here, endogenously formed Hfq–RNA complexes of Y. pestis were captured with immunoprecipitation with a monoclonal anti-Flag antibody. The Hfq-associated RNAs were then purified and identified with deep sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9(8):578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sauer E (2013) Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol 10(4):610–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner EG (2013) Cycling of RNAs on Hfq. RNA Biol 10(4):619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morita T, Aiba H (2011) RNase E action at a distance: degradation of target mRNAs mediated by an Hfq-binding small RNA in bacteria. Genes Dev 25(4):294–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Link TM, Valentin-Hansen P, Brennan RG (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106(46):19292–19297

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schumacher MA, Pearson RF, Moller T, Valentin-Hansen P, Brennan RG (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21(13):3546–3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Otaka H, Ishikawa H, Morita T, Aiba H (2011) PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 108(32):13059–13064

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sauer E, Weichenrieder O (2011) Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci U S A 108(32):13065–13070

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sauer E, Schmidt S, Weichenrieder O (2012) Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci U S A 109(24):9396–9401

    Article  PubMed  PubMed Central  Google Scholar 

  10. Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W et al (2009) Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 4(7):e6213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai G, Golubov A, Smith EA, McDonough KA (2010) The importance of the small RNA chaperone Hfq for growth of epidemic Yersinia pestis, but not Yersinia pseudotuberculosis, with implications for plague biology. J Bacteriol 192(16):4239–4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4(8):e1000163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sittka A, Sharma CM, Rolle K, Vogel J (2009) Deep sequencing of salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 6(3):266–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Han, Y. (2018). Purification of Hfq-Associated RNAs with RNA Immunoprecipitation (RIP). In: Yang, R. (eds) Yersinia Pestis Protocols. Springer Protocols Handbooks. Springer, Singapore. https://doi.org/10.1007/978-981-10-7947-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7947-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7946-7

  • Online ISBN: 978-981-10-7947-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics