Generation of Paint Probes from Flow-Sorted and Microdissected Chromosomes

  • Fengtang YangEmail author
  • Vladimir Trifonov
  • Bee Ling Ng
  • Nadezda Kosyakova
  • Nigel P. Carter
Part of the Springer Protocols Handbooks book series (SPH)


FISH with whole chromosome or region-specific painting probes made from either flow-sorted or microdissected chromosomes has revolutionized cytogenetics. Generation of paints from flow-sorted chromosomes relies on the use of an expensive and sophisticated fluorescence-activated cell sorter and suspensions of freshly prepared chromosomes. Preparation of paints from microdissected materials requires an inverted microscope with appropriate micromanipulators and metaphase chromosome spreads on coverslips. Painting probes made from flow-sorted chromosomes generally have better chromosomal coverage and can be used in a wide range of applications between distantly related species, while region-specific probes from microdissection enable higher-resolution analyses restricted to comparative painting between closely related species. Here we provide detailed protocols on generation probes from both flow-sorted and microdissected chromosomes.


Probe for FISH Chromosome painting Flow sorting Microdissection Human chromosome-specific paints Animal chromosome-specific paints 



While writing this protocol, VT was supported by Budget Projects 0310-2014-0003, 0310-2014-0008, 0310-2014-0009, and DFG. FY, BLN, and NPC are supported by the Wellcome Trust (Grant number WT098051).


  1. 1.
    Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725CrossRefPubMedGoogle Scholar
  3. 3.
    Meltzer PS, Guan XY, Burgess A et al (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1:24–28CrossRefPubMedGoogle Scholar
  4. 4.
    Carter NP, Ferguson-Smith MA, Perryman MT et al (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29:299–307CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rabbitts P, Impey H, Heppell-Parton A et al (1995) Chromosome specific paints from a high resolution flow karyotype of the mouse. Nat Genet 9:369–375CrossRefPubMedGoogle Scholar
  6. 6.
    Wienberg J, Jauch A, Stanyon R et al (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350CrossRefPubMedGoogle Scholar
  7. 7.
    Jauch A, Wienberg J, Stanyon R et al (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Scherthan H, Cremer T, Arnason U et al (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6:342–347CrossRefPubMedGoogle Scholar
  9. 9.
    Yang F, Carter NP, Shi L et al (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652CrossRefPubMedGoogle Scholar
  10. 10.
    Yang F, O’Brien P, Milne B et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202CrossRefPubMedGoogle Scholar
  11. 11.
    Scalenghe F, Turco E, Edstrom JE et al (1981) Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82:205–216CrossRefPubMedGoogle Scholar
  12. 12.
    Senger G, Lüdecke HJ, Horsthemke B et al (1990) Microdissection of banded human chromosomes. Hum Genet 84:507–511CrossRefPubMedGoogle Scholar
  13. 13.
    Guan XY, Meltzer PS, Cao J et al (1992) Rapid generation of region-specific genomic clones by chromosome microdissection: isolation of DNA from a region frequently deleted in malignant melanoma. Genomics 14:680–684CrossRefPubMedGoogle Scholar
  14. 14.
    Weimer J, Kiechle M, Senger G et al (1999) An easy and reliable procedure of microdissection technique for the analysis of chromosomal breakpoints and marker chromosomes. Chromosome Res 7:355–362CrossRefPubMedGoogle Scholar
  15. 15.
    Liehr T, Heller A, Starke H et al (2002) Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9:335–339PubMedGoogle Scholar
  16. 16.
    Liehr T, Starke H, Heller A et al (2006) Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding. Cytogenet Genome Res 114:240–244CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Fengtang Yang
    • 1
    Email author
  • Vladimir Trifonov
    • 2
  • Bee Ling Ng
    • 1
  • Nadezda Kosyakova
    • 3
  • Nigel P. Carter
    • 1
  1. 1.Wellcome Trust Sanger InstituteHinxton, CambridgeUK
  2. 2.Institute of Molecular and Cellular Biology, Russian Academy of SciencesNovosibirskRussia
  3. 3.Jena University Hospital, Institute of Human Genetics, Friedrich Schiller UniversityJenaGermany

Personalised recommendations