Advertisement

Interphase FISH for Detection of Chromosomal Mosaicism

  • Ivan Y. Iourov
  • Svetlana G. Vorsanova
  • Yuri B. Yurov
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Interphase fluorescence in situ hybridization (iFISH) allows qualitative and quantitative detection of chromosomal DNA at all stages of the cell cycle and at molecular resolutions. Accordingly, this methodology offers an opportunity to address chromosome numbers and structures in all the human tissues. In this light, a variety of iFISH techniques have been acknowledged as indispensable for studying intercellular genomic variation or somatic chromosomal mosaicism. Here, an interphase FISH protocol for the detection of intercellular genomic variations and low-level chromosomal mosaicism in somatic tissues is described. Additionally, technical issues influencing the results of iFISH are considered.

Keywords

Interphase fluorescence in situ hybridization (iFISH) Evaluation Mosaicism Molecular resolution 

Notes

Acknowledgments

The chapter is dedicated to Ilia V. Soloviev. The authors are supported by a grant from the Russian Science Foundation (project #14-35-00060).

References

  1. 1.
    Vorsanova SG, Kolotii AD, Iourov IY et al (2005) Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem Cytochem 53:375–380CrossRefPubMedGoogle Scholar
  2. 2.
    Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yurov YB, Iourov IY, Monakhov VV et al (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53:385–390CrossRefPubMedGoogle Scholar
  4. 4.
    Yurov YB, Vorsanova SG, Iourov IY (eds) (2013) Human interphase chromosomes: biomedical aspects. Springer Science and Business Media, New YorkGoogle Scholar
  5. 5.
    Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191CrossRefPubMedGoogle Scholar
  6. 6.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq 2:6–15CrossRefPubMedGoogle Scholar
  7. 7.
    Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13:477–488CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Iourov IY, Vorsanova SG, Yurov YB (2013) Interphase chromosomes of the human brain: the biological and clinical meaning of neural aneuploidy. In: Yurov YB, Vorsanova SG, Iourov IY (eds) Human interphase chromosomes: biomedical aspects. Springer, New York, pp 53–83CrossRefGoogle Scholar
  9. 9.
    Iourov IY, Vorsanova SG, Yurov YB (2016) Detection of nuclear DNA by interphase fluorescence in situ hybridization. Encyclopedia of Analytical Chemistry: 1–12Google Scholar
  10. 10.
    Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 10:1609–1627CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liehr T (ed) (2009) Fluorescence in situ hybridization (FISH)—application guide: Springer protocols. Springer, HeidelbergGoogle Scholar
  12. 12.
    Liehr T, Weise A, Hamid AB et al (2013) Multicolor FISH methods in current clinical diagnostics. Expert Rev Mol Diagn 13:251–255CrossRefPubMedGoogle Scholar
  13. 13.
    Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37:S194–S209CrossRefGoogle Scholar
  14. 14.
    Bakker B, van den Bos H, Lansdorp PM et al (2015) How to count chromosomes in a cell: an overview of current and novel technologies. Bioessays 37:570–577CrossRefPubMedGoogle Scholar
  15. 15.
    Yurov YB, Soloviev IV, Vorsanova SG et al (1996) High resolution fluorescence in situ hybridization using cyanine and fluorescein dyes: ultra-rapid chromosome detection by directly fluorescently labeled alphoid DNA probes. Hum Genet 97:390–398CrossRefPubMedGoogle Scholar
  16. 16.
    Iurov II, Vorsanova SG, Solov’ev IV et al (2011) Original molecular cytogenetic approach to determining spontaneous chromosomal mutations in the interphase cells to evaluate the mutagenic activity of environmental factors. Gig Sanit 5:90–94PubMedGoogle Scholar
  17. 17.
    Potapova TA, Unruh JR, Box AC et al (2015) Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software. Biotechniques 59:335–336CrossRefPubMedGoogle Scholar
  18. 18.
    Iourov IY, Vorsanova SG, Liehr T et al (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18:2656–2669CrossRefPubMedGoogle Scholar
  19. 19.
    Iourov IY, Vorsanova SG, Liehr T et al (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220CrossRefPubMedGoogle Scholar
  20. 20.
    Devadhasan JP, Kim S, An J (2011) Fish-on-a-chip: a sensitive detection microfluidic system for Alzheimer’s disease. J Biomed Sci 18:33CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hovhannisyan G, Aroutiounian R, Liehr T (2012) Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C. J Histochem Cytochem 60:316–322PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yurov YB, Iourov IY, Vorsanova SG et al (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2, e558CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yurov YB, Vorsanova SG, Iourov IY et al (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44:521–525CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yurov YB, Vorsanova SG, Iourov IY (2010) Ontogenetic variation of the human genome. Curr Genomics 11:420–425CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vorsanova SG, Iourov IY, Kolotii AD et al (2010) Chromosomal mosaicism in spontaneous abortions: analysis of 650 cases. Rus J Genet 46:1197–1200CrossRefGoogle Scholar
  26. 26.
    Vorsanova SG, Yurov YB, Soloviev IV et al (2010) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11:440–446CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Chromosomal mosaicism goes global. Mol Cytogenet 1:26CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Iourov IY, Vorsanova SG, Yurov YB (2010) Somatic genome variations in health and disease. Curr Genomics 11:387–396CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Iourov IY, Vorsanova SG, Yurov YB (2013) Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139:181–188CrossRefPubMedGoogle Scholar
  30. 30.
    Rodríguez-Santiago B, Malats N et al (2010) Mosaic uniparental disomies and aneuploidies as large structural variants of the human genome. Am J Hum Genet 87:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bushman DM, Chun J (2013) The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 24:357–369CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hultén MA, Jonasson J, Iwarsson E et al (2013) Trisomy 21 mosaicism: we may all have a touch of down syndrome. Cytogenet Genome Res 139:189–192CrossRefPubMedGoogle Scholar
  33. 33.
    Taylor TH, Gitlin SA, Patrick JL et al (2014) The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 20:571–581CrossRefPubMedGoogle Scholar
  34. 34.
    Campbell IM, Shaw CA, Stankiewicz P et al (2015) Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 31:382–392CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liehr T, Ziegler M (2005) Rapid prenatal diagnostics in the interphase nucleus: procedure and cut-off rates. J Histochem Cytochem 53:289–291CrossRefPubMedGoogle Scholar
  36. 36.
    Weier JF, Ferlatte C, Weier HU (2010) Somatic genomic variations in extra-embryonic tissues. Curr Genomics 11:402–408CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yurov YB, Vostrikov VM, Vorsanova SG et al (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 23:S186–S190CrossRefPubMedGoogle Scholar
  38. 38.
    Yurov YB, Vorsanova SG, Iourov IY (2009) GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2:23CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Iourov IY, Liehr T, Vorsanova SG et al (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res 14:223–229CrossRefPubMedGoogle Scholar
  40. 40.
    Iourov IY, Vorsanova SG, Zelenova MA et al (2015) Genomic copy number variation affecting genes involved in the cell cycle pathway: implications for somatic mosaicism. Int J Genomics 2015:757680CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Devalle S, Sartore RC, Paulsen BS et al (2012) Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci 6:36CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Andriani GA, Vijg J, Montagna C (2016) Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev. pii: S0047-6374(16)30028-8. doi:  10.1016/j.mad.2016.03.007
  43. 43.
    Das K, Tan P (2013) Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 84:315–325CrossRefPubMedGoogle Scholar
  44. 44.
    Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32:325–340CrossRefPubMedGoogle Scholar
  45. 45.
    Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139:144–157CrossRefPubMedGoogle Scholar
  46. 46.
    Faggioli F, Wang T, Vijg J et al (2012) Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet 21:5246–5253CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arendt T, Brückner MK, Lösche A (2015) Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability. Acta Neuropathol 130:501–510CrossRefPubMedGoogle Scholar
  48. 48.
    Yurov YB, Vorsanova SG, Iourov IY (2011) The DNA replication stress hypothesis of Alzheimer’s disease. Sci World J 11:2602–2612CrossRefGoogle Scholar
  49. 49.
    Iourov IY, Vorsanova SG, Yurov YB (2014) In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 7:98CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Iourov IY, Vorsanova SG, Demidova IA et al (2015) (2015) 5p13.3p13.2 duplication associated with developmental delay, congenital malformations and chromosome instability manifested as low-level aneuploidy. Springerplus 4:616CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7:20CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2016). Genome instability in Alzheimer disease. Mech Ageing Dev. pii: S0047-6374(16)30047-1. doi:  10.1016/j.mad.2016.04.005
  53. 53.
    Iourov IY, Yurov YB, Vorsanova SG (2007) Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism. Med Hypotheses 70:456CrossRefPubMedGoogle Scholar
  54. 54.
    Svyryd Y, Hernández-Molina G, Vargas F et al (2012) X chromosome monosomy in primary and overlapping autoimmune diseases. Autoimmun Rev 11:301–304CrossRefPubMedGoogle Scholar
  55. 55.
    Yurov YB, Iourov IY, Vorsanova SG et al (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98:139–147CrossRefPubMedGoogle Scholar
  56. 56.
    Soloviev IV, Yurov YB, Vorsanova SG et al (1995) Prenatal diagnosis of trisomy 21 using interphase fluorescence in situ hybridization of postreplicated cells with site-specific cosmid and cosmid contig probes. Prenat Diagn 15:237–248CrossRefPubMedGoogle Scholar
  57. 57.
    Iourov IY, Soloviev IV, Vorsanova SG et al (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53:401–408CrossRefPubMedGoogle Scholar
  58. 58.
    Vorsanova SG, Iourov IY, Beresheva AK et al (2005) Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome. Tsitol Genet 39:30–36PubMedGoogle Scholar
  59. 59.
    Iourov IY, Liehr T, Vorsanova SG et al (2013) Interphase chromosome-specific multicolor banding. In: Yurov YB, Vorsanova SG, Iourov IY (eds) Human interphase chromosomes: biomedical aspects. Springer, New York, pp 161–169CrossRefGoogle Scholar
  60. 60.
    Iourov IY, Vorsanova SG, Pellestor F et al (2006) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132PubMedGoogle Scholar
  61. 61.
    Iourov IY, Liehr T, Vorsanova SG et al (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24:415–417CrossRefPubMedGoogle Scholar
  62. 62.
    Weise A, Gross M, Hinreiner S et al (2010) POD-FISH: a new technique for parental origin determination based on copy number variation polymorphism. Methods Mol Biol 659:291–298CrossRefPubMedGoogle Scholar
  63. 63.
    Liehr T (2016) Cytogenetically visible copy number variations (CG-CNVs) in banding and molecular cytogenetics of human; about heteromorphisms and euchromatic variants. Mol Cytogenet 9:5CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Iourov IY, Vorsanova SG, Liehr T et al (2008) Dynamic mosaicism manifesting as loss, gain and rearrangement of an isodicentric Y chromosome in a male child with growth retardation and abnormal external genitalia. Cytogenet Genome Res 121:302–306CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ivan Y. Iourov
    • 1
    • 2
    • 3
  • Svetlana G. Vorsanova
    • 1
    • 2
    • 4
  • Yuri B. Yurov
    • 1
    • 2
    • 4
  1. 1.Mental Health Research CenterMoscowRussia
  2. 2.Russian National Research Medical University named after N. I. Pirogov, Separated Structural Unit “Clinical Research Institute of Pediatrics”, Ministry of Health of Russian FederationMoscowRussia
  3. 3.Department of Medical GeneticsRussian Medical Academy of Postgraduate EducationMoscowRussia
  4. 4.Moscow State University of Psychology and EducationMoscowRussia

Personalised recommendations