Advertisement

Generation of Single-Chain Fv Fragments and Multivalent Derivatives scFv-Fc and scFv-CH3 (Minibodies)

  • Tove OlafsenEmail author
  • Vania E. Kenanova
  • Anna M. Wu
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Intermediate-sized antibody fragments, such as scFv-CH3 (minibodies) and scFv-Fc, retain high avidity for their antigen due to their nature of bivalency. In addition, the incorporation of the Fc region enables the generation of antibody fragments with a variety of biological functions and pharmacokinetic properties. This protocol describes the isolation of variable genes from hybridoma cells, gene assembly, cloning, and stable expression of these fragments in mammalian cells. These fragments are expressed as single peptide chains which bypass the challenges of coexpressing immunoglobulin heavy and light chains. Included is also a protocol to screen for high expressing clones, and suggestions for purification and biochemical characterization of the purified proteins.

Keywords

Antibody Fragment Hinge Region Constant Domain QIAprep Spin Ethidium Bromide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS, Stafford WF 3rd, Bookman MA, Fand I, Houston LL, Weiner LM (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53:4026–34PubMedGoogle Scholar
  2. Adams GP, Schier R, McCall AM, Crawford RS, Wolf EJ, Weiner LM, Marks JD (1998) Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer 77:1405–12PubMedCrossRefGoogle Scholar
  3. Alamillo JM, Monger W, Sola I, Garcia B, Perrin Y, Bestagno M, Burrone OR, Sabella P, Plana-Duran J, Enjuanes L, Lomonossoff GP, Garcia JA (2006) Use of virus vectors for the expression in plants of active full-length and single chain anti-coronavirus antibodies. Biotechnol J 1:1103–11PubMedCrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–10PubMedGoogle Scholar
  5. Better M, Chang CP, Robinson RR, Horwitz AH (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science (New York) 240:1041–3CrossRefGoogle Scholar
  6. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science (New York) 242:423–6CrossRefGoogle Scholar
  7. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85PubMedCrossRefGoogle Scholar
  8. Choi I, De Ines C, Kurschner T, Cochlovius B, Sorensen V, Olafsen T, Sandlie I, Little M (2001) Recombinant chimeric OKT3 scFv IgM antibodies mediate immune suppression while reducing T cell activation in vitro. Eur J Immunol 31:94–106PubMedCrossRefGoogle Scholar
  9. Dall'Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, Wu H, Kiener PA, Langermann S (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169:5171–80PubMedGoogle Scholar
  10. Dolezal O, Pearce LA, Lawrence LJ, McCoy AJ, Hudson PJ, Kortt AA (2000) ScFv multimers of the anti-neuraminidase antibody NC10: shortening of the linker in single-chain Fv fragment assembled in V(L) to V(H) orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Eng 13:565–74PubMedCrossRefGoogle Scholar
  11. Dübel S, Breitling F, Fuchs P, Zewe M, Gotter S, Welschof M, Moldenhauer G, Little M (1994) Isolation of IgG antibody Fv-DNA from various mouse and rat hybridoma cell lines using the polymerase chain reaction with a simple set of primers. J Immunol Methods 175:89–95PubMedCrossRefGoogle Scholar
  12. Dübel S, Breitling F, Kontermann R, Schmidt T, Skerra A, Little M (1995) Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J Immunol Methods 178:201–9PubMedCrossRefGoogle Scholar
  13. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176:346–56PubMedGoogle Scholar
  14. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–8PubMedCrossRefGoogle Scholar
  15. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–61PubMedGoogle Scholar
  16. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 85:5879–83PubMedCrossRefGoogle Scholar
  17. Kelly MP, Lee FT, Tahtis K, Power BE, Smyth FE, Brechbiel MW, Hudson PJ, Scott AM (2008) Tumor targeting by a multivalent single-chain Fv (scFv) anti-Lewis Y antibody construct. Cancer Biother Radiopharmceut 23:411–23CrossRefGoogle Scholar
  18. Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65:622–31PubMedGoogle Scholar
  19. Kostelny SA, Cole MS, Tso JY (1992) Formation of a bispecific antibody by the use of leucine zippers. J Immunol 148:1547–53PubMedGoogle Scholar
  20. Li E, Pedraza A, Bestagno M, Mancardi S, Sanchez R, Burrone O (1997) Mammalian cell expression of dimeric small immune proteins (SIP). Protein Eng 10:731–6PubMedCrossRefGoogle Scholar
  21. Libyh MT, Goossens D, Oudin S, Gupta N, Dervillez X, Juszczak G, Cornillet P, Bougy F, Reveil B, Philbert F, Tabary T, Klatzmann D, Rouger P, Cohen JH (1997) A recombinant human scFv anti-Rh(D) antibody with multiple valences using a C-terminal fragment of C4-binding protein. Blood 90:3978–83PubMedGoogle Scholar
  22. Mallender WD, Voss EW Jr (1994) Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 269:199–206PubMedGoogle Scholar
  23. Martin AC (1996) Accessing the Kabat antibody sequence database by computer. Proteins 25:130–3PubMedCrossRefGoogle Scholar
  24. Neumaier M, Shively L, Chen FS, Gaida FJ, Ilgen C, Paxton RJ, Shively JE, Riggs AD (1990) Cloning of the genes for T84.66, an antibody that has a high specificity and affinity for carcinoembryonic antigen, and expression of chimeric human/mouse T84.66 genes in myeloma and Chinese hamster ovary cells. Cancer Res 50:2128–34PubMedGoogle Scholar
  25. Olafsen T, Rasmussen IB, Norderhaug L, Bruland OS, Sandlie I (1998) IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells. Immunotechnology 4:141–53PubMedCrossRefGoogle Scholar
  26. Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, Li L, Press MF, Gambhir SS, Williams LE, Wong JY, Raubitschek AA, Shively JE, Wu AM (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–16PubMedCrossRefGoogle Scholar
  27. Olafsen T, Betting D, Kenanova VE, Salazar FB, Clarke P, Said J, Raubitschek AA, Timmerman JM, Wu AM (2009) Recombinant anti-CD20 antibody fragments for microPET imaging of B-cell lymphoma. J Nucl Med 50:1500–08PubMedCrossRefGoogle Scholar
  28. Pack P, Pluckthun A (1992) Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry 31:1579–84PubMedCrossRefGoogle Scholar
  29. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18:1759–69PubMedCrossRefGoogle Scholar
  30. Retter I, Althaus HH, Munch R, Muller W (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33:D671–4PubMedCrossRefGoogle Scholar
  31. Rheinnecker M, Hardt C, Ilag LL, Kufer P, Gruber R, Hoess A, Lupas A, Rottenberger C, Pluckthun A, Pack P (1996) Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen. J Immunol 157:2989–97PubMedGoogle Scholar
  32. Ridgway JB, Presta LG, Carter P (1996) 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–21PubMedCrossRefGoogle Scholar
  33. Shu L, Qi CF, Schlom J, Kashmiri SV (1993) Secretion of a single-gene-encoded immunoglobulin from myeloma cells. Proc Natl Acad Sci USA 90:7995–9PubMedCrossRefGoogle Scholar
  34. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science (New York) 240:1038–41CrossRefGoogle Scholar
  35. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D (1999) Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 59:347–52PubMedGoogle Scholar
  36. Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R, Ratner D (2000) Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. J Immunol Methods 233:167–77PubMedCrossRefGoogle Scholar
  37. Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, Rollence ML, Wood JF, Schott ME, Milenic DE et al (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6:989–95PubMedCrossRefGoogle Scholar
  38. Wu AM, Chen W, Raubitschek A, Williams LE, Neumaier M, Fischer R, Hu SZ, Odom-Maryon T, Wong JY, Shively JE (1996) Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology 2:21–36PubMedCrossRefGoogle Scholar
  39. Wu AM, Williams LE, Zieran L, Padma A, Sherman M, Bebb GG, Odom-Maryon T, Wong JYC, Shively JE, Raubitschek AA (1999) Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Target 4:47–58Google Scholar
  40. Wu AM, Tan GJ, Sherman MA, Clarke P, Olafsen T, Forman SJ, Raubitschek AA (2001) Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng 14:1025–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Crump Institute for Molecular Imaging, Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of California Los AngelesLos AngelesUSA

Personalised recommendations