Fusion Proteins with Improved PK

  • Roland StorkEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Small recombinant antibody formats are rapidly cleared from circulation. The coupling of these molecules to human serum albumin (HSA) is an efficient strategy to prolong their in vivo half-life. Two methods are described in this chapter for the attachment of HSA to small antibody molecules: the direct fusion of HSA and the indirect coupling by the fusion of an albumin-binding domain to the antibody. Furthermore, an assay is described to verify the functionality of the albumin-binding domain, and a method is proposed to determine the antibodies serum half-life in mice.


Fusion Protein Human Serum Albumin HEK293 Cell Immobilize Metal Affinity Chromatography Small Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109(2):170–179PubMedCrossRefGoogle Scholar
  2. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54(4):531–545PubMedCrossRefGoogle Scholar
  3. Dennis MS et al (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277(38):35035–35043PubMedCrossRefGoogle Scholar
  4. Hamidi M, Azadi A, Rafiei P (2006) Pharmacokinetic consequences of pegylation. Drug Deliv 13(6):399–409PubMedCrossRefGoogle Scholar
  5. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136PubMedCrossRefGoogle Scholar
  6. Holt LJ et al (2008) Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel 21(5):283–288PubMedCrossRefGoogle Scholar
  7. Johansson MU et al (2002) Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem 277(10):8114–8120PubMedCrossRefGoogle Scholar
  8. Jonsson A et al (2008) Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 21(8):515–527PubMedCrossRefGoogle Scholar
  9. Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20(1):17–29PubMedGoogle Scholar
  10. Kim J et al (2006) Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol 290(2):G352–G360PubMedCrossRefGoogle Scholar
  11. Kontermann RE (2005) Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol Sin 26(1):1–9PubMedCrossRefGoogle Scholar
  12. Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23:93–109CrossRefGoogle Scholar
  13. Kraulis PJ et al (1996) The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. FEBS Lett 378(2):190–194PubMedCrossRefGoogle Scholar
  14. Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9PubMedCrossRefGoogle Scholar
  15. Linhult M et al (2002) Mutational analysis of the interaction between albumin-binding domain from streptococcal protein G and human serum albumin. Protein Sci 11(2):206–213PubMedCrossRefGoogle Scholar
  16. Muller D et al (2007) Improved Pharmacokinetics of Recombinant Bispecific Antibody Molecules by Fusion to Human Serum Albumin. J Biol Chem 282(17):12650–12660PubMedCrossRefGoogle Scholar
  17. Nguyen A et al (2006) The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel 19(7):291–297PubMedCrossRefGoogle Scholar
  18. Schlapschy M et al (2007) Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel 20(6):273–284PubMedCrossRefGoogle Scholar
  19. Stork R, Muller D, Kontermann RE (2007) A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel 20(11):569–576PubMedCrossRefGoogle Scholar
  20. Stork R et al (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283(12):7804–7812PubMedCrossRefGoogle Scholar
  21. Subramanian GM et al (2007) Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol 25(12):1411–1419PubMedCrossRefGoogle Scholar
  22. Weir AN et al (2002) Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 30(4):512–516PubMedCrossRefGoogle Scholar
  23. Yazaki PJ et al (2008) Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein. Nucl Med Biol 35(2):151–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Cell Biology and ImmunologyUniversity of StuttgartStuttgartGermany

Personalised recommendations