Advertisement

Immune Libraries from Nonhuman Primates (NHP)

  • Thibaut Pelat
  • Michael Hust
  • Philippe ThullierEmail author
Protocol
  • 3.3k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Libraries constructed from immunised non human primates (NHP; macaques here) are an appealing alternative to human libraries when immunization of Humans is difficult, as is so often the case. These phage-displayed libraries allow to obtain antibody fragments of very high affinities (nano- to picomolar), and diverse epitopes are targeted so that antibodies with the desired activity can be isolated. Due to their high similarity with their human counterparts, NHP antibodies might be readily humanized or germline-humanized, to ensure an excellent tolerance for medical use. Practical peculiarities of this convenient approach, as well as legal aspects, will be considered.

Keywords

Ligation Reaction Calf Intestine Phosphatase scFv Library 2xYT Medium Antibody Phage Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amersdorfer P, Wong C, Smith T, Chen S, Deshpande S, Sheridan R, Marks JD (2002) Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine 20:1640–1648PubMedCrossRefGoogle Scholar
  2. Andris JS, Miller AB, Abraham SR, Cunningham S, Roubinet F, Blancher A, Capra JD (1997) Variable region gene segment utilization in rhesus monkey hybridomas producing human red blood cell-specific antibodies: predominance of the VH4 family but not VH4–21 (V4–34). Mol Immunol 34:237–253PubMedCrossRefGoogle Scholar
  3. Barbas CF (2001) Phage display: a laboratory manual, protocol 10.5. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  4. Chassagne S, Laffly E, Drouet E, Herodin F, Lefranc MP, Thullier P (2004) A high-affinity macaque antibody Fab with human-like framework regions obtained from a small phage display immune library. Mol Immunol 41:539–546PubMedCrossRefGoogle Scholar
  5. Glamann J, Hirsch VM (2000) Characterization of a macaque recombinant monoclonal antibody that binds to a CD4-induced epitope and neutralizes simian immunodeficiency virus. J Virol 74:7158–7163PubMedCrossRefGoogle Scholar
  6. Kawamura S, Omoto K, Ueda S (1990) Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene. J Mol Biol 215:201–206PubMedCrossRefGoogle Scholar
  7. Kawamura S, Saitou N, Ueda S (1992) Concerted evolution of the primate immunoglobulin alpha-gene through gene conversion. J Biol Chem 267:7359–7367PubMedGoogle Scholar
  8. Kirsch MI, Hulseweh B, Nacke C, Rulker T, Schirrmann T, Marschall HJ, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66PubMedCrossRefGoogle Scholar
  9. Laffly E, Danjou L, Condemine F, Vidal D, Drouet E, Lefranc MP, Bottex C, Thullier P (2005) Selection of a macaque Fab with framework regions like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of Bacillus anthracis by binding to the segment of PA between residues 686 and 694. Antimicrob Agents Chemother 49:3414–3420PubMedCrossRefGoogle Scholar
  10. Meek K, Eversole T, Capra JD (1991) Conservation of the most JH proximal Ig VH gene segment (VHVI) throughout primate evolution. J Immunol 146:2434–2438PubMedGoogle Scholar
  11. Newman RA, Hanna N, Raab RW (1997) US patent 5,693,780, 2 December 1997Google Scholar
  12. Newman RA, Hanna N, Raab RW (1992) European patent 1,266,965 B1, 24 Jun 1992Google Scholar
  13. Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc MP, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764PubMedCrossRefGoogle Scholar
  14. Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78PubMedCrossRefGoogle Scholar
  15. Rosenwasser LJ, Busse WW, Lizambri RG, Olejnik TA, Totoritis MC (2003) Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol 112:563–570PubMedCrossRefGoogle Scholar
  16. Schopf RE (2001) Idec-114 (Idec). Curr Opin Investig Drugs 2:635–638PubMedGoogle Scholar
  17. Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dübel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thibaut Pelat
    • 1
  • Michael Hust
    • 2
  • Philippe Thullier
    • 1
    Email author
  1. 1.Département de biologie des agents transmissiblesCentre de Recherche du Service de Santé des Armées Groupe de biotechnologie des anticorpsLa TroncheFrance
  2. 2.Institut für Biochemie und BiotechnologieTechnische UniversitätBraunschweigGermany

Personalised recommendations