Functional Characterization of Antibodies Neutralizing Soluble Factors In Vitro and In Vivo

  • Geertruida M. VeldmanEmail author
  • Zehra Kaymakcalan
  • Renee Miller
  • Leena Kalghatgi
  • Jochen G. Salfeld
Part of the Springer Protocols Handbooks book series (SPH)

Functional characterization of antibodies that inhibit soluble cytokines or chemokines requires robust, sensitive in vitro and in vivo bioassays. Testing an antibody in vitro requires consideration of antigen source, integrity, and concentration, as well as the magnitude of the biologic response and assay interference by components in the antibody test sample. This chapter describes several exemplary in vitro bioassays, including an assay to determine species cross-reactivity of an anti–tumor necrosis factor antibody and a whole blood assay for interleukin–18 (IL–18) to determine neutralization of native antigen. Testing an antibody in vivo requires consideration of species cross-reactivity, selection of the dose range and the route of administration, analyses of the pharmacokinetics and tissue distribution of the antibody, and evaluation of host antibody responses. An example of an in vivo bioassay, in which human peripheral blood mononuclear cells are injected into severe combined immunodeficient mice and activated in vivo to produce human IL–18, is provided.


Antigen Concentration L929 Culture Medium Human Tumor Necrosis Factor Native Antigen Antigen Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Editorial support was provided by Robin L. Stromberg, PhD, of Arbor Communications, Inc. (Ann Arbor, MI, USA) and funded by Abbott Laboratories.


  1. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914PubMedCrossRefGoogle Scholar
  2. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:1924–1927PubMedCrossRefGoogle Scholar
  3. Boyman O, Ramsey C, Kim DM, Sprent J, Surh CD (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180:7265–7275PubMedGoogle Scholar
  4. Darling RJ, Brault PA (2004) Kinetic exclusion assay technology: characterization of molecular interactions. Assay Drug Dev Technol 2:647–657PubMedCrossRefGoogle Scholar
  5. Fernandez-Botran R, Vètvička V (2001) Assays of cytokines. In: Methods in cellular immunology, 2nd edn. CRC Press, Boca Raton, FL. pp 87–158Google Scholar
  6. Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR (1993) Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol 151:1235–1244PubMedGoogle Scholar
  7. Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL (2007) Detection of intracellular cytokines by flow cytometry. Curr Protoc Immunol  Chap. 6 :Unit 6.24
  8. Glickman JF, Wu X, Mercuri R, Illy C, Bowen BR, He Y, Sills M (2002) A comparison of AlphaScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10PubMedCrossRefGoogle Scholar
  9. Guenat S, Rouleau N, Bielmann C, Bedard J, Maurer F, Allaman-Pillet N, Nicod P, Bielefeld-Sévigny M, Beckmann JS, Bonny C, Bossé R, Roduit R (2006) Homogeneous and nonradioactive high-throughput screening platform for the characterization of kinase inhibitors in cell lysates. J Biomol Screen 11:1015–1026PubMedCrossRefGoogle Scholar
  10. Haringman JJ, Gerlag DM, Smeets TJ, Baeten D, van den Bosch F, Bresnihan B, Breedveld FC, Dinant HJ, Legay F, Gram H, Loetscher P, Schmouder R, Woodworth T, Tak PP (2006) A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 54:2387–2392PubMedCrossRefGoogle Scholar
  11. Hautanen A, Gailit J, Mann DM, Ruoslahti E (1989) Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 264:1437–1442PubMedGoogle Scholar
  12. Jeffes EW 3rd, Schmitz K, Yamamoto R, Tomich JM, Beckman M, Nep R, Knauer M (1991) A simple nonisotopic in vitro bioassay for LT and TNF employing sodium fluoride-treated L-929 target cells that detects picogram quantities of LT and TNF and is as sensitive as TNF assays done with ELISA methodology. Lymphokine Cytokine Res 10:147–151PubMedGoogle Scholar
  13. Kasaian MT, Tan XY, Jin M, Fitz L, Marquette K, Wood N, Cook TA, Lee J, Widom A, Agostinelli R, Bree A, Schlerman FJ, Olland S, Wadanoli M, Sypek J, Gill D, Goldman SJ, Tchistiakova L (2008) Interleukin-13 neutralization by two distinct receptor blocking mechanisms reduces immunoglobulin E responses and lung inflammation in cynomolgus monkeys. J Pharmacol Exp Ther 325:882–892PubMedCrossRefGoogle Scholar
  14. Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 97:1190–1195PubMedCrossRefGoogle Scholar
  15. Konishi K, Tanabe F, Taniguchi M, Yamauchi H, Tanimoto T, Ikeda M, Orita K, Kurimoto M (1997) A simple and sensitive bioassay for the detection of human interleukin-18/interferon-gamma-inducing factor using human myelomonocytic KG-1 cells. J Immunol Methods 209:187–191PubMedCrossRefGoogle Scholar
  16. Li J, Tomkinson KN, Tan XY, Wu P, Yan G, Spaulding V, Deng B, Annis-Freeman B, Heveron K, Zollner R, De Zutter G, Wright JF, Crawford TK, Liu W, Jacobs KA, Wolfman NM, Ling V, Pittman DD, Veldman GM, Fouser LA (2004) Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol 4:693–708PubMedCrossRefGoogle Scholar
  17. Llopis J, Westin S, Ricote M, Wang Z, Cho CY, Kurokawa R, Mullen TM, Rose DW, Rosenfeld MG, Tsien RY, Glass CK (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97:4363–4368PubMedCrossRefGoogle Scholar
  18. May LT, Neta R, Moldawer LL, Kenney JS, Patel K, Sehgal PB (1993) Antibodies chaperone circulating IL-6. Paradoxical effects of anti-IL-6 “neutralizing” antibodies in vivo. J Immunol 151:3225–3236PubMedGoogle Scholar
  19. Meager A (2006) Measurement of cytokines by bioassays: theory and application. Methods 38:237–252PubMedCrossRefGoogle Scholar
  20. Miller R, Sadhukhan R, Wu C (2008) Development of an in vitro potency bioassay for therapeutic IL-13 antagonists: the A-549 cell bioassay. J Immunol Methods 334:134–141PubMedCrossRefGoogle Scholar
  21. Miyashita M, Shimada T, Miyagawa H, Akamatsu M (2005) Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal Bioanal Chem 381:667–673PubMedCrossRefGoogle Scholar
  22. Myszka DG, Jonsen MD, Graves BJ (1998) Equilibrium analysis of high affinity interactions using BIACORE. Anal Biochem 265:326–330PubMedCrossRefGoogle Scholar
  23. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12:53–72PubMedCrossRefGoogle Scholar
  24. Pappu BP, Dong C (2007) Measurement of interleukin–17. Curr Protoc Immunol Chap. 6:Unit 6.25Google Scholar
  25. Pauli U, Bertoni G, Duerr M, Peterhans E (1994) A bioassay for the detection of tumor necrosis factor from eight different species: evaluation of neutralization rates of a monoclonal antibody against human TNF-alpha. J Immunol Methods 171:263–265PubMedCrossRefGoogle Scholar
  26. Underwood PA (1993) Problems and pitfalls with measurement of antibody affinity using solid phase binding in the ELISA. J Immunol Methods 164:119–130PubMedCrossRefGoogle Scholar
  27. Wilson J, Rossi CP, Carboni S, Fremaux C, Perrin D, Soto C, Kosco-Vilbois M, Scheer A (2003) A homogeneous 384-well high-throughput binding assay for a TNF receptor using AlphaScreen technology. J Biomol Screen 8:522–532PubMedCrossRefGoogle Scholar
  28. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, Ghayur T (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297PubMedCrossRefGoogle Scholar
  29. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486PubMedGoogle Scholar
  30. Zabeau L, Van der Heyden J, Broekaert D, Verhee A, Vandekerckhove J, Wu SJ, Chaiken I, Heinrich P, Behrmann I, Tavernier J (2001) Neutralizing monoclonal antibodies can potentiate IL-5 signaling. Eur J Immunol 31:1087–1097PubMedCrossRefGoogle Scholar
  31. Zeng R, Spolski R, Leonard WJ (2007) Measurement of interleukin–21. Curr Protoc Immunol Chap. 6:Unit 6.30Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Geertruida M. Veldman
    • 1
    Email author
  • Zehra Kaymakcalan
    • 1
  • Renee Miller
    • 1
  • Leena Kalghatgi
    • 1
  • Jochen G. Salfeld
    • 1
  1. 1.Department of BiologicsAbbott Bioresearch CenterWorcesterUSA

Personalised recommendations