Epitope Mapping by Printed Peptide Libraries

  • Frank BreitlingEmail author
  • Christopher Schirwitz
  • Thomas Felgenhauer
  • Ines Block
  • Volker Stadler
  • Ralf Bischoff
Part of the Springer Protocols Handbooks book series (SPH)

Affordable high-density peptide arrays are needed to routinely define the exact binding sites of antibodies. In terms of prize and density peptide arrays currently lag far behind oligonucleotide arrays that are available in densities exceeding 50.000 oligonucleotides per cm2. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with the lithographic methods, which adds up to an excessive number of coupling cycles. The combinatorial synthesis of peptide arrays based on electrically charged solid amino acid particles circumvents this problem. A colour laser printer or a microchip consecutively address the different charged particles to a solid support, where a complete layer of solid amino acid particles is melted at once. This releases hitherto immobilized amino acids to couple all 20 different amino acids to the support in one single coupling reaction.


Horse Radish Peroxidase Linear Epitope Laser Printer Peptide Array Combinatorial Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beyer M, Felgenhauer T, Bischoff FR, Breitling F, Stadler V (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials 27:3505–3514PubMedCrossRefGoogle Scholar
  2. Beyer M, Nesterov A, Block I, König K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U, Lindenstruth V, Bischoff FR, Stadler V, Breitling F (2007) Combinatorial synthesis of peptide arrays onto a computer chip’s surface. Science 318:1888PubMedCrossRefGoogle Scholar
  3. Borsenberger PM, Weiss DS (2002) Photoreceptors: organic photoconductors. In: Diamond AS, Weiss DS (eds) Handbook of imaging materials, 2nd edn. Marcel Dekker, New York, pp 369–423Google Scholar
  4. Breitling F, Felgenhauer T, Nesterov A, Lindenstruth V, Stadler V, Bischoff FR (2008) Particle-based combinatorial peptide synthesis. CHEMBIOCHEM 10:803–808 Concept articleCrossRefGoogle Scholar
  5. Breitling F, Felgenhauer T, Nesterov A, Stadler V, Bischoff FR (2009) High-density peptide arrays. Mole Biosyst 5:224–234 ReviewCrossRefGoogle Scholar
  6. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis. A practical approach. Oxford University Press, OxfordGoogle Scholar
  7. Dikmans A, Beutling U, Schmeisser E, Thiele S, Frank R (2006) SC2: A novel process for manufacturing multipurpose high-density chemical microarrays QSAR comb. Science 25:1069–1080Google Scholar
  8. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773PubMedCrossRefGoogle Scholar
  9. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232CrossRefGoogle Scholar
  10. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81:3998–4002PubMedCrossRefGoogle Scholar
  11. Hilpert K, Hansen G, Wessner H, Küttner G, Welfle K, Seifert M, Höhne W (2001) Anti-c-myc antibody 9E10: epitope key positions and variability characterized using peptide spot synthesis on cellulose. Protein Eng 14:803–806PubMedCrossRefGoogle Scholar
  12. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86PubMedCrossRefGoogle Scholar
  13. Kawagishi Y, Ishida Y, Ishikawa K (1983) (Orient Chemical Ind.), patent application US 4404271A1Google Scholar
  14. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24PubMedCrossRefGoogle Scholar
  15. Mandal S, Rouillard JM, Srivannavit O, Gulari E (2007) Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays. Biotechnol Prog 23:972–978PubMedGoogle Scholar
  16. Merrifield RB (1965) Automated synthesis of peptides. Science 150:178–185 ReviewPubMedCrossRefGoogle Scholar
  17. Pellois JP, Zhou X, Srivannavit O, Zhou T, Gulari E, Gao X (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20:922–926PubMedCrossRefGoogle Scholar
  18. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167CrossRefGoogle Scholar
  19. Reineke U, Volkmer-Engert R, Schneider-Mergener J (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol 12:59–64PubMedCrossRefGoogle Scholar
  20. Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel HP, Volkmer-Engert R, Schneider-Mergener J (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 267:37–51PubMedCrossRefGoogle Scholar
  21. Slootstra JW, Kuperus D, Plückthun A, Meloen RH (1997) Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies M1, M2 and M5. Mol Divers 2:156–164PubMedCrossRefGoogle Scholar
  22. Stadler V, Beyer M, König K, Nesterov A, Torralba G, Lindenstruth V, Hausmann M, Bischoff FR, Breitling F (2007) Multifunctional CMOS Microchip Coatings for Protein and Peptide Arrays. J. Proteome Res 6:3197–3202PubMedCrossRefGoogle Scholar
  23. Stadler V, Felgenhauer T, Beyer M, Fernandez S, Leibe K, Güttler S, Gröning M, Torralba G, Lindenstruth V, Nesterov A, Block I, Pipkorn R, Poustka A, Bischoff FR, Breitling F (2008a) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Ed Engl 47:7132–7135PubMedCrossRefGoogle Scholar
  24. Stadler V, Kirmse R, Beyer M, Breitling F, Ludwig T, Bischoff FR (2008b) PEGMA/MMA Copolymer Graftings: Generation, Protein Resistance, and a Hydrophobic Domain. Langmuir 24:8151–8157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Breitling
    • 1
    Email author
  • Christopher Schirwitz
    • 2
  • Thomas Felgenhauer
    • 2
  • Ines Block
    • 2
  • Volker Stadler
    • 2
  • Ralf Bischoff
    • 2
  1. 1.Karlsruhe Institute of TechnologyHelmholtzplatz 1Eggenstein-LeopoldshafenGermany
  2. 2.AG Chipbasierte PeptidbibliothekenIm Neuenheimer Feld 580HeidelbergGermany

Personalised recommendations