ISH Probes Derived from BACs, Including Microwave Treatment for Better FISH Results

  • Anja WeiseEmail author
  • Kristin Mrasek
  • Nadezda Kosyakova
  • Hasmik Mkrtchyan
  • Madeleine Gross
  • Vivien Klaschka
  • Thomas Liehr
Part of the Springer Protocols Handbooks book series (SPH)

Besides the well-known applications of bacterial artificial chromosomes (BACs) in classical molecular genetics, BACs are also used for molecular cytogenetic studies. BACs, as well as other locus-specific probes like cDNA, plasmids, cosmids, fosmids, P1-clones or yeast artificial chromosomes (YACs), can be labeled with fluorochromes and applied in FISH experiments. Various applications are possible, like gene mapping, FISH banding, determination of chromosomal breakpoints, characterization of derivative chromosomes, studies of interphase architecture, and karyotypic evolution studies. Here the basic principle of hybridizing BACs in situ on chromosome preparations is outlined. Moreover, an overview of possible issues that can be studied using BACs as FISH probes is provided. Finally, a shortened and more efficient FISH protocol using microwave treatment which yields results that can be evaluated within a few hours is presented.


Bacterial Artificial Chromosome Microwave Treatment Yeast Artificial Chromosome Chromosome Painting Probe Partial Chromosome Painting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acknowledgments Supported in part by the Evangelische Studienwerk e.V. Villigst, IZKF Jena (Start-up S16, TP 3.7), Friedrich Schiller University Jena, TMWFK (B307–04004), Stiftung Leukämie and Stefan-Morsch-Stiftung.


  1. Backx L, Van Esch H, Melotte C, Kosyakova N, Starke H, Frijns JP, Liehr T, Vermeesch JR (2007)Array painting using microdissected chromosomes to map chromosomal breakpoints. Cytogenet Genome Res 116:158–166CrossRefPubMedGoogle Scholar
  2. Birren BW, Tachi-iri Y, Kim UJ, Nguyen M, Shizuya H, Korenberg JR, Simon MI (1996)A human chromosome 22 fosmid resource: mapping and analysis of 96 clones. Genomics 34:97–106CrossRefPubMedGoogle Scholar
  3. Gisselsson D, Palsson E, Hoglund M, Domanski H, Mertens F, Pandis N, Sciot R, Dal Cin P, Bridge JA, Mandahl N (2002) Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer 33:133–140CrossRefPubMedGoogle Scholar
  4. Liehr T (2006) Application of YACs in fluorescence in situ hybridization (FISH). In: Alesandair M (ed) Methods in molecular biology YAC protocols, 2nd edn. Humana, Totowa, NJ, pp. 175–186, ISBN 1–58829–612–1Google Scholar
  5. Liehr T, Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Weier HU, Claussen U (2002)Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 97:43–50CrossRefPubMedGoogle Scholar
  6. Liehr T, Starke H, Senger G, Melotte C, Weise A, Vermeesch JR (2006) Overrepresentation of small supernumerary marker chromosomes (sSMC) from chromosome 6 origin in cases with multiple sSMC. Am J Med Genet A 140:46–51PubMedGoogle Scholar
  7. Mark H, Wyandt H, Huang X, Milunsky J (2005) Delineation of a supernumerary marker chromosome utilizing a multimodal approach of G-banding, fluorescent in situ hybridization, confirmatory P1 artificial chromosome fluorescent in situ hybridization, and high-resolution comparative genomic hybridization. Clin Genet 68:146–151CrossRefPubMedGoogle Scholar
  8. Michels-Rautenstrauss KG, Mardin C Y, Budde WM, Liehr T, Polansky J, Nguyen T, Timmerman V, Van Broeckhoven C, Naumann GO, Pfeiffer RA, Rautenstrauss BW (1998) Juvenile open angle glaucoma: fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis. Hum Genet 102:103–106CrossRefPubMedGoogle Scholar
  9. Nogami M, Nogami O, Kagotani K, Okumura M, Taguchi H, Ikemura T, Okumura K (2000)Intranuclear arrangement of human chromosome 12 correlates to large-scale replication domains. Chromosoma 108:514–522CrossRefPubMedGoogle Scholar
  10. Pietrzak J, Mrasek K, Obersztyn E, Stankiewicz P, Kosyakova N, Weise A, Cheung SW, Cai WW, von Eggeling F, Mazurczak T, Bocian E, Liehr T (2007) Molecular cytogenetic characterization of eight small supernumerary marker chromosomes originating from chromosomes 2, 4,8, 18, and 21 in three patients. J Appl Genet 48:167–175PubMedGoogle Scholar
  11. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefPubMedGoogle Scholar
  12. Rubtsov N, Senger G, Kuzcera H, Neumann A, Kelbova C, Junker K, Beensen V, Claussen U (1996) Interstitial deletion of chromosome 6q: precise definition of the breakpoints by micro-dissection, DNA amplification, and reverse painting. Hum Genet 97:705–709CrossRefPubMedGoogle Scholar
  13. Schmidt S, Claussen U, Liehr T, Weise A (2005) Evolution versus constitution: differences in chromosomal inversion. Hum Genet 117:213–219CrossRefPubMedGoogle Scholar
  14. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  15. Tsuchiya D, Matsumoto A, Covert SF, Bronson CR, Taga M (2002) Physical mapping of plasmid and cosmid clones in filamentous fungi by fiber-FISH. Fungal Genet Biol 37:22–28CrossRefPubMedGoogle Scholar
  16. von Deimling F, Scharf JM, Liehr T, Rothe M, Kelter AR, Albers P, Dietrich WF, Kunkel LM, Wernert N, Wirth B (1999) Human and mouse RAD17 genes: Identification, localization, genomic structure and histological expression pattern in normal testis and seminoma. Hum Genet 105:17–27CrossRefGoogle Scholar
  17. Weise A, Harbarth P, Claussen U, Liehr T (2003) Fluorescence in situ hybridization (FISH) on human chromosomes using photoprobe biotin-labeled probes. J Histochem Cytochem 51:549–551PubMedGoogle Scholar
  18. Weise A, Starke H, Mrasek K, Claussen U, Liehr T (2005a) New insights into the evolution of chromosome 1. Cytogenet Genome Res 108:217–222CrossRefGoogle Scholar
  19. Weise A, Liehr T, Claussen U, Halbhuber K-J (2005b) Increased efficiency of fluorescence in situ hybridization (FISH) using the microwave. J Histochem Cytochem 53:1301–1303CrossRefGoogle Scholar
  20. Weise A, Gross M, Mrasek K, Mkrtchyan H, Horsthemke B, Jonsrud C, von Eggeling F, Hinreiner S, Witthuhn V, Claussen U, Liehr T (2008) Parental-origin-determination FISH (pod-FISH) distinguishes homologous human chromosomes on a single cell level. Int J Mol Med 21:189–200PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anja Weise
    • 1
    Email author
  • Kristin Mrasek
    • 1
  • Nadezda Kosyakova
    • 1
  • Hasmik Mkrtchyan
    • 2
  • Madeleine Gross
    • 1
  • Vivien Klaschka
    • 1
  • Thomas Liehr
    • 1
  1. 1.Institut für Humangenetik und AnthropologieJenaGermany
  2. 2.Department of Genetic and Laboratory of CytogeneticsState UniversityJerewanArmenia

Personalised recommendations