Advertisement

Generation of Paint Probes by Flow-Sorted and Microdissected Chromosomes

  • Fengtang YangEmail author
  • Vladimir Trifonov
  • Bee Ling Ng
  • Nadezda Kosyakova
  • Nigel P. Carter
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

FISH with whole-chromosome or region-specific painting probes made from either flow-sorted or microdissected chromosomes has revolutionized cytogenetics. The generation of paints from flow-sorted chromosomes relies on the use of an expensive and sophisticated fluorescence-activated cell sorter and suspensions of freshly prepared chromosomes. The preparation of paints from microdissected materials requires an inverted microscope with appropriate micromanipulators and metaphase chromosome spreads on coverslips. Painting probes made from flow-sorted chromosomes generally have better chromosomal coverage and can be used in a wide range of applications between unrelated species, while region-specific probes from microdissection enable higher resolution analyses restricted to comparative painting between closely related species. Here we provide detailed protocols on the generation of probes from both flow-sorted and microdissected chromosomes.

Keywords

Chromosome Painting Sodium Sulfite Paint Probe Gentian Violet Microdissected Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Backx L, Van Esch H, Melotte C, Kosyakova N, Starke H, Frijns JP, Liehr T, Vermeesch JR (2007) Array painting using microdissected chromosomes to map chromosomal breakpoints. Cytogenet Genome Res 116:158–166CrossRefPubMedGoogle Scholar
  2. Carter NP, Ferguson-Smith MA, Perryman MT, Telenius H, Pelmear AH, Leversha MA, Glancy MT, Wood SL, Cook K, Dyson HM (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29:299–307CrossRefPubMedGoogle Scholar
  3. Guan XY, Meltzer PS, Cao J, Trent JM (1992) Rapid generation of region-specific genomic clones by chromosome microdissection: isolation of DNA from a region frequently deleted in malig nant melanoma. Genomics 14:680–684CrossRefPubMedGoogle Scholar
  4. Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615CrossRefPubMedGoogle Scholar
  5. Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002) Microdissection based high resolution multicolor banding for all 24 human chromo somes. Int J Mol Med 9:335–339PubMedGoogle Scholar
  6. Liehr T, Starke H, Heller A, Kosyakova N, Mrasek K, Gross M, Karst C, Steinhaeuser U, Hunstig F, Fickelscher I, Kuechler A, Trifonov V, Romanenko SA, Weise A (2006) Multicolor fluores cence in situ hybridization (FISH) applied to FISH-banding. Cytogenet Genome Res 114: 240–244CrossRefPubMedGoogle Scholar
  7. Meltzer PS, Guan X Y, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1:24–28CrossRefPubMedGoogle Scholar
  8. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries — detection of trisomy-21 and translocations of chromosome-4. Proc Natl Acad Sci USA 85:9138–9142CrossRefPubMedGoogle Scholar
  9. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefPubMedGoogle Scholar
  10. Rabbitts P, Impey H, Heppell-Parton A, Langford C, Tease C, Lowe N, Bailey D, Ferguson-Smith MA, Carter NP (1995) Chromosome specific paints from a high resolution flow karyotype of the mouse. Nat Genet 9:369–375CrossRefPubMedGoogle Scholar
  11. Scalenghe F, Turco E, Edstrom JE, Pirrotta V, Melli M (1981) Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82:205–216CrossRefPubMedGoogle Scholar
  12. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria M, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6:342–347CrossRefPubMedGoogle Scholar
  13. Senger G, Lüdecke HJ, Horsthemke B, Claussen U (1990) Microdissection of banded human chromosomes. Hum Genet 84:507–511CrossRefPubMedGoogle Scholar
  14. Starke H, Raida M, Trifonov V, Clement JH, Loncarevic IF, Heller A, Bleck C, Nietzel A, Rubtsov N, Claussen U, Liehr T (2001) Molecular cytogenetic characterization of an acquired super numerary minute marker chromosome as sole abnormality in a case clinically diagnosed as Philadelphia negative CML. Br J Haematol 113(2):435–438CrossRefPubMedGoogle Scholar
  15. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992a) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725CrossRefGoogle Scholar
  16. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992b) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263CrossRefGoogle Scholar
  17. Trifonov VA, Perelman PL, Kawada S-I, Iwasa MA, Oda S-I, Graphodatsky AS (2002) Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora) revealed by microdissection. Chromosome Res 10(2): 109–116CrossRefPubMedGoogle Scholar
  18. Trifonov V, Seidel J, Starke H, Prechtel M, Beensen V, Ziegler M, Hartmann I, Heller A, Nietzel A, Claussen U, Liehr T (2003) Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6p22.2-pter. Prenat Diagn 23(5):427–430CrossRefPubMedGoogle Scholar
  19. Trifonov V, Karst C, Claussen U, Mrasek K, Michel S, Avner P, Liehr T (2005) Microdissection-derived murine Mcb probes from somatic cell hybrids. J Histochem Cytochem 53:791–792CrossRefPubMedGoogle Scholar
  20. Weimer J, Kiechle M, Senger G, Wiedemann U, Ovens-Raeder A, Schuierer S, Kautza M, Siebert R, Arnold N (1999) An easy and reliable procedure of microdissection technique for the analysis of chromosomal breakpoints and marker chromosomes. Chromosome Res 7:355–362CrossRefPubMedGoogle Scholar
  21. Wienberg J, Jauch A, Stanyon R, Cremer T (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350CrossRefPubMedGoogle Scholar
  22. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652CrossRefPubMedGoogle Scholar
  23. Yang F, O'Brien P, Milne B, Graphodatsky A, Solansky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith M (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fengtang Yang
    • 1
    Email author
  • Vladimir Trifonov
    • 2
  • Bee Ling Ng
    • 1
  • Nadezda Kosyakova
    • 3
  • Nigel P. Carter
    • 1
  1. 1.Wellcome Trust Sanger InstituteWellcome Trust Genome Campus HinxtonCambridgeUK
  2. 2.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussian Federation
  3. 3.Institut für Humangenetik und AnthropologieJenaGermany

Personalised recommendations