The invention of cross-species chromosome painting (ZOO-FISH) represents the most significant technical breakthrough in animal cytogenetics since the introduction of chromosomal banding techniques in the late 1960s and early 1970s. It has made it possible to compare the karyotypes of virtually any two vertebrate species that diverged up to 100 million years ago. With the availability of paint probes for more and more vertebrate species, the impact of ZOO-FISH on animal comparative cytogenetics is becoming far-reaching, leading to the great progress in cytogenetics and cytogenomics. Two detailed protocols for cross-species chromosome painting are provided here.

References

  1. Ao L, Gu X, Feng Q, Wang J, O'Brien PCM, Fu B, Mao X, Su W, Wang Y, Volleth M, Yang F, Nie W (2006) Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and g-banding comparison. Cytogenet Genome Res 115:145–153CrossRefPubMedGoogle Scholar
  2. Ao L, Mao XG, Nie WH, Gu XM, Feng Q, Wang JH, Su WT, Wang YX, Volleth M, Yang F (2007) Karyotypic evolution and phylogenetic relationships in the order chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 15:257–226PubMedGoogle Scholar
  3. Balmus G, Trifonov VA, Biltueva LS, O'Brien PCM, Alkalaeva ES, Fu B, Skidmore JA, Allen T, Graphodatsk AS, Yang F, Ferguson-Srnith MA (2007) Cross-species chromosome painting among camel, cattle, pig and human: Further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 15:499–515CrossRefPubMedGoogle Scholar
  4. Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mam Genome 15:809–818CrossRefGoogle Scholar
  5. Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F (2005) New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108:310–316CrossRefPubMedGoogle Scholar
  6. Deng W, Tsao SW, Lucas JN, Leung CS, Cheung ALM (2003) A new method for improving metaphase chromosome spreading. Cytometry Part A 51:46–51CrossRefGoogle Scholar
  7. Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8: 950–962.CrossRefPubMedGoogle Scholar
  8. Graphodatsky AS, Yang F, O'Brien PCM, Serdukova N, Milne BS, Trifonov V, Ferguson-Smith MA (2000a) A comparative chromosome map of the arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8:253–263CrossRefGoogle Scholar
  9. Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova NS, Ferguson-Smith MA (2000b) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90:275–278CrossRefGoogle Scholar
  10. Graphodatsky A, Yang F, O'Brien PCM, Perelman P, Milne BS, Serdukova N, Kawada SI, Ferguson-Smith MA (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92:243–247CrossRefPubMedGoogle Scholar
  11. Graphodatsky AS, Yang F, Perelman PL, O'Brien PCM, Serdukova NA, Milne BS, Biltueva LS, Fu B, Vorobieva NV, Kawada SI, Robinson TJ, Ferguson-Smith MA (2002) Comparative molecular cytogenetic studies in the order carnivora: Mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96:137–145CrossRefPubMedGoogle Scholar
  12. Graphodatsky AS, Perelman PL, Sokolovskaya NV, Beklemisheva VR, Serdukova NA, Dobigny G, O'Brien SJ, Ferguson-Smith MA, Yang F (2008a) Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting. Chromosome Res 16:129–143CrossRefGoogle Scholar
  13. Graphodatsky AS, Yang F, Dobigny G, Romanenko SA, Biltueva LS, Perelman PL, Beklemisheva VR, Alkalaeva EZ, Serdukova NA, Ferguson-Smith MA, Murphy WJ, Robinson TJ (2008b) Tracking genome organization in rodents by Zoo-FISH. Chromosome Res 16:261–274CrossRefGoogle Scholar
  14. Henegariu O, Heerema NA, Wright LL, Bray-Ward P, Ward D, Vance GH (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43:101–109CrossRefPubMedGoogle Scholar
  15. Huang L, Nie WH, Wang JH, Su WT, Yang F (2005) Phylogenomic study of the subfamily capri- nae by cross-species chromosome painting with Chinese muntjac paints. Chromosome Res 13: 389–399CrossRefPubMedGoogle Scholar
  16. Huang L, Chi JX, Nie WH, Wang JH, Yang F (2006) Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127:25–33CrossRefPubMedGoogle Scholar
  17. Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci U S A 89:8611–8615CrossRefPubMedGoogle Scholar
  18. Korstanje R, O'Brien PCM, Yang F, Rens W, Bosma AA, van Lith HA, van Zutphen LFM, Ferguson-Smith MA (1999) Complete homology maps of the rabbit (oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenetic Cell Genet 86:317–322CrossRefGoogle Scholar
  19. Li TL, O'Brien PCM, Biltueva L, Fu BY, Wang JH, Nie WH, Ferguson-Smith MA, Graphodatsky AS, Yang F (2004) Evolution of genome organizations of squirrels (sciuridae) revealed by cross-species chromosome painting. Chromosome Res 12:317–335CrossRefPubMedGoogle Scholar
  20. Li T, Wang J, Su W, Nie W, Yang F (2006a) Karyotypic evolution of the family sciuridae. Inferences from the genome organizations of ground squirrels. Cytogenet Genome Res 112: 270–276CrossRefGoogle Scholar
  21. Li T, Wang J, Su W, Yang F (2006b) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114:50–55CrossRefGoogle Scholar
  22. Mao XG, Nie WH, Wang JH, Su WT, Ao L, Feng Q, Wang YX, Volleth M, Yang F (2007) Karyotype evolution in rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross- species chromosome painting and g-banding comparison. Chromosome Res 15:835–848CrossRefPubMedGoogle Scholar
  23. Nie WH, Liu RQ, Chen YZ, Wang JH, Yang F (1998) Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res 6:447–453CrossRefPubMedGoogle Scholar
  24. Nie WH, Wang JH, O'Brien PCM, Fu BY, Ying T, Ferguson-Smith MA, Yang F (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10:209–222CrossRefPubMedGoogle Scholar
  25. Nie WH, Wang JH, Perelman P, Graphodatsky AS, Yang F (2003) Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Res 11:735–740CrossRefPubMedGoogle Scholar
  26. Nie WH, O'Brien PCM, Fu BY, Wang JH, Su WT, Ferguson-Smith MA, Robinson TJ, Yang F (2006) Chromosome painting between human and lorisiform prosimians: Evidence for the hsa 7/16 synteny in the primate ancestral karyotype. Am J Phys Anthropol 129:250–259CrossRefPubMedGoogle Scholar
  27. Pardini AT, O'Brien PCM, Fu B, Bonde RK, Elder FFB, Ferguson-Smith MA, Yang F, Robinson TJ (2007) Chromosome painting among Proboscidea, Hyracoidea and Sirenia: Support for pae- nungulata (Afrotheria, Mammalia) but not tethytheria. Proc R Soc B Biol Sci 274:1333–1340CrossRefGoogle Scholar
  28. Perelman PL, Graphodatsky AS, Serdukova NA, Nie W, Alkalaeva EZ, Fu B, Robinson TJ, Yang F (2005) Karyotypic conservatism in the suborder feliformia (order Carnivora). Cytogenet Genome Res 108:348–354CrossRefPubMedGoogle Scholar
  29. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries—detection of trisomy-21 and translocations of chromosome-4. Proc Nat Acad Sci USA 85:9138–9142CrossRefPubMedGoogle Scholar
  30. Rabbitts P, Impey H, Heppell-Parton A, Langford C, Tease C, Lowe N, Bailey D, Malcolm Ferguson-Smith MA, Carter NP (1995) Chromosome specific paints from a high resolution flow karyotype of the mouse. Nature Genet 9:369–375CrossRefPubMedGoogle Scholar
  31. Rens W, O'Brien PCM, Yang F, Graves JAM, Ferguson-Smith MA (1999) Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chromosome Res 7:461–474CrossRefPubMedGoogle Scholar
  32. Rens W, O'Brien PCM, Yang F, Solanky N, Perelman P, Graphodatsky AS, Ferguson MWJ, Svartman M, De Leo AA, Graves JAM, Ferguson-Smith MA (2001) Karyotype relationships between distantly related marsupials from South America and Australia. Chromosome Res 9:301–308CrossRefPubMedGoogle Scholar
  33. Rens W, O'Brien PCM, Fairclough H, Harman L, Graves JAM, Ferguson-Smith MA (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102:282–290CrossRefPubMedGoogle Scholar
  34. Robinson TJ, Yang F, Harrison WR (2002) Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha). Cytogenet Genome Res 96:223–227CrossRefPubMedGoogle Scholar
  35. Robinson TJ, Fu B, Ferguson-Smith MA, Yang F (2004) Cross-species chromosome painting in the golden mole and elephant-shrew: Support for the mammalian clades afrotheria and afroin- sectiphillia but not afroinsectivora. Proc R Soc B-Biol Sci 271:1477–1484CrossRefGoogle Scholar
  36. Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang JH, Li TL, Nie WH, O'Brien PCM, Volobouev VT, Stanyon R, Ferguson-Smith MA, Yang F, Graphodatsky AS (2006) Reciprocal chromosome painting between three laboratory rodent species. Mam Genome 17:1183–1192CrossRefGoogle Scholar
  37. Romanenko SA, Sitnikova NA, Serdukova NA, Perelman PL, Rubtsova NV, Bakloushinskaya IY, Lyapunova EA, Just W, Ferguson-Smith MA, Yang F, Graphodatsky AS (2007a) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:891–897CrossRefGoogle Scholar
  38. Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA, Trifonov VA, Biltueva LS, Nie W, Brien P, Bulatova NS, Ferguson-Smith MA, Yang F, Graphodatsky AS (2007b) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15:283–297CrossRefGoogle Scholar
  39. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria M, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6:342–347CrossRefPubMedGoogle Scholar
  40. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992a) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725CrossRefGoogle Scholar
  41. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992b) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263CrossRefGoogle Scholar
  42. Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ (2003) Cross-species chromosome painting in the Perissodactyla: Delimitation of homologous regions in Burchell's zebra (Equus burchellii) and the white (Ceratotherium simum) and black rhinoceros (Diceros bicornis). Cytogenetic Genome Res 103:104–110CrossRefGoogle Scholar
  43. Trifonov VA, Stanyon R, Anastasia I, Nesterenko AI, Fu B, Perelman PL, O'Brien PCM, Gary S, Rubtsova NV, Houck ML, Robinson TJ, Ferguson-Smith MA, Dobigny G, Graphodatsky AS, Yang F (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107CrossRefPubMedGoogle Scholar
  44. Wienberg J, Jauch A, Stanyon R, Cremer T (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350CrossRefPubMedGoogle Scholar
  45. Yang F, Carter NP, Shi L, Fergusonsmith MA (1995) A comparative study of karyotypes of munt- jacs by chromosome painting. Chromosoma 103:642–652CrossRefPubMedGoogle Scholar
  46. Yang F, O'Brien PCM, Wienberg J, Ferguso-nSmith MA (1997a) A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5:109–117CrossRefGoogle Scholar
  47. Yang F, O'Brien PCM, Wienberg J, Ferguson-Smith MA (1997b) Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Cell Genet 76:159–163CrossRefGoogle Scholar
  48. Yang F, O'Brien PCM, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997c) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43CrossRefGoogle Scholar
  49. Yang F, Muller S, Just R, FergusonSmith MA, Wienberg J (1997d) Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396–401CrossRefGoogle Scholar
  50. Yang F, O'Brien PCM, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith MA (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202CrossRefPubMedGoogle Scholar
  51. Yang F, O'Brien PCM, Ferguson-Smith MA (2000a) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8:219–227CrossRefGoogle Scholar
  52. Yang F, Graphodatsky AS, O'Brien PCM, Colabella A, Solanky N, Squire M, Sargan DR, Ferguson-Smith MA (2000b) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8:393–404CrossRefGoogle Scholar
  53. Yang F, Alkalaeva EZ, Perelman PL, Pardini AT, Harrison WR, O'Brien PCM, Fu B, Graphodatsky AS, Ferguson-Smith MA, Robinson TJ (2003a) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Nat Acad Sci USA 100:1062–1066CrossRefGoogle Scholar
  54. Yang F, Fu B, O'Brien PCM, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003b) Karyotypic relationships of horses and zebras: Results of cross-species chromosome painting. Cytogenet Genome Res 102:235–243CrossRefGoogle Scholar
  55. Yang F, Fu BY, O'Brien PCM, Nie WH, Ryder OA, Ferguson-Smith MA (2004) Refined genome- wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: Insight into the occasional fertility of mules. Chromosome Res 12:65–76CrossRefPubMedGoogle Scholar
  56. Yang F, Graphodatsky AS, Li TL, Fu BY, Dobigny G, Wang JH, Perelman PL, Serdukova NA, Su WT, O'Brien PCM, Wang YX, Ferguson-Smith MA, Volobouev V, Nie WH (2006) Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: Further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Res 14:283–296CrossRefPubMedGoogle Scholar
  57. Ye JP, Biltueva L, Huang L, Nie WH, Wang JH, Jing MD, Su WT, Vorobieva NV, Jiang XL, Graphodatsky AS, Yang F (2006) Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Res 14:151–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, HinxtonCambridgeUK
  2. 2.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations