Advertisement

Parental Origin Determination FISH: Pod-FISH

  • Anja WeiseEmail author
  • Kristin Mrasek
  • Mkrtchyan Hasmik
  • Madeleine Gross
  • Sophie Hinreiner
  • Witthuhn Vera
  • Thomas Liehr
Protocol
  • 1.6k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Except for when individuals have variations in the pericentric heterochromatic chromosomal regions (including acrocentric short arms), it is not possible to distinguish between homologous chromosomes at a single-cell level. Due to this limitation, various questions of scientific and diagnostic relevance have been off-limits. Based on copy number variations (CNV) spanning up to several megabasepairs of DNA, we developed a molecular cytogenetic approach for the interindividual differentiation of homologous chromosomes, the so-called parental origin determination fluorescence in situ hybridization (pod-FISH) technique. To perform this technique, all human chromosomes are covered with CNV-spanning BAC probes in one- to five-color chromosome-specific pod-FISH sets. This new approach to studying the parental origin of individual human chromosomes at a single-cell level has opened new horizons for diagnostics and basic research.

Keywords

Copy Number Variation Homologous Chromosome Signal Intensity Difference Individual Human Chromosome Molecular Cytogenetic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supported in part by a grant from the university of Jena, Deutsche Krebshilfe (70-3125-Li1), INTAS (AISbl 03-51-4060), IZKF Jena (Start-up S16), DFG (436 ARM 17/5/06), IZKF together with the TMWFK (TP 3.7 and B307-04004), Ernst-Abbe-Stiftung, Stiftung Leukämie, Stefan-Morsch-Stiftung, and Evangelische Studienwerk e.V. Villigst.

References

  1. Gardner RGM, Sutherland GR (2004) Oxford Monographs on Medical Genetics No 46: Chromosome abnormalities and genetic counselling, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  2. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949 –951CrossRefPubMedGoogle Scholar
  3. ISCN (2005) In: Shaffer LG, Tommerup N, Karger S (eds) ISCN: An international system for human cytogenetic nomenclature. Basel, SwitzerlandGoogle Scholar
  4. Lee C (2005) Vive la difference! Nat Genet 37:660 –661CrossRefPubMedGoogle Scholar
  5. Liehr T, Nietzel A, Starke H, Heller A, Weise A, Kuechler A, Senger G, Ebner S, Martin T, Stumm M, Wegner R, Tonnies H, Hoppe C, Claussen U, von Eggeling F (2003a) Characterization of Small Marker Chromosomes (SMC) by recently developed molecular cytogenetic approaches. J Assoc Genet Technol 29:5 –10Google Scholar
  6. Liehr T, Ziegler M, Starke H, Heller A, Kuechler A, Kittner G, Beensen V, Seidel J, Hassler H, Musebeck J, Claussen U (2003b) Conspicuous GTG-banding results of the centromere-near region can be caused by alphoid DNA heteromorphism. Clin Genet 64:166 –167CrossRefGoogle Scholar
  7. Müller H, Klinger HP, Glasser M (1975) Chromosome polymorphism in a human newborn population II: Potentials of polymorphic chromosome variants for characterizing the idiogram of an individual. Cytogenet Cell Genet 15:239 –255CrossRefPubMedGoogle Scholar
  8. Nietzel A, Albrecht B, Starke H, Heller A, Gillessen-Kaesbach G, Claussen U, Liehr T (2003) Partial hexasomy 15pter — >15q13 including SNRPN and D15S10: first molecular cytogeneti-cally proven case report. J Med Genet 40:e28CrossRefPubMedGoogle Scholar
  9. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63 –69CrossRefPubMedGoogle Scholar
  10. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number polymorphism in the human genome. Science 23:525 –528CrossRefGoogle Scholar
  11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77:78 –88CrossRefPubMedGoogle Scholar
  12. Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R, Colleaux L, Bobrow M, Carter NP (2004): Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241 –248CrossRefPubMedGoogle Scholar
  13. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson M V, Eichler EE (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727 –732CrossRefPubMedGoogle Scholar
  14. Weise A, Gross M, Mrasek K, Mkrtchyan H, Horsthemke B, Jonsrud C, Von Eggeling F, Hinreiner S, Witthuhn V, Claussen U, Liehr T (2008) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21:189 –200PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anja Weise
    • 1
    Email author
  • Kristin Mrasek
    • 1
  • Mkrtchyan Hasmik
    • 2
    • 3
  • Madeleine Gross
    • 1
  • Sophie Hinreiner
    • 1
  • Witthuhn Vera
    • 1
  • Thomas Liehr
    • 1
  1. 1.Institut für Humangenetik und AnthropologieJenaGermany
  2. 2.Department of Genetic and Laboratory of CytogeneticsState UniversityJerewan
  3. 3.Armenia, and Institut für Humangenetik und AnthropologieJenaGermany

Personalised recommendations