Advertisement

The Murine Femoral Bone Graft Model and a Semiautomated Histomorphometric Analysis Tool

  • Robinder S. Dhillon
  • Longze Zhang
  • Edward M. Schwarz
  • Brendan F. Boyce
  • Chao Xie
Part of the Methods in Molecular Biology book series (MIMB, volume 1130)

Abstract

Preclinical studies of bone repair remain a high priority because of unresolved clinical problems associated with treating critical segmental defects and complications of fracture healing. Over the last decade, the murine femoral allograft model has gained popularity due to its standardized surgery and potential for examining a vast array of radiographic, biomechanical, and histological outcome measures. Here, we describe these methods and a novel semiautomated histomorphometric approach to quantify the amount of bone, cartilage, and undifferentiated mesenchymal tissue in demineralized paraffin sections of allografted murine femurs using the Visiopharm Image Analysis Software System.

Keywords

Visiopharm Histomorphometry Bone graft Allograft Autograft Skeletal repair 

Notes

Acknowledgements

The authors would like to thank Ryan Tierney, Sarah Mack, Kathleen Maltby, and Ashish Thomas for their assistance with the histology and whole-slide scanning. This work was supported by research grants from the National Institutes of Health (1S10RR027340, DE19902, AR54041, and P30 AR061307).

References

  1. 1.
    Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, Guldberg RE, Schwarz EM, O'Keefe RJ, Zhang X (2007) Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng 13(3):435–445 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]CrossRefPubMedGoogle Scholar
  2. 2.
    Xie C, Xue M, Wang Q, Schwarz EM, O'Keefe RJ, Zhang X (2008) Tamoxifen-inducible CreER-mediated gene targeting in periosteum via bone-graft transplantation. J Bone Joint Surg Am 90(1):9–13 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xie C, Liang B, Xue M, Lin AS, Loiselle A, Schwarz EM, Guldberg RE, O'Keefe RJ, Zhang X (2009) Rescue of impaired fracture healing in COX-2-/- mice via activation of prostaglandin E2 receptor subtype 4. Am J Pathol 175(2):772–785 [Research Support, N.I.H., Extramural]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dhillon RS, Xie C, Tyler W, Calvi LM, Awad HA, Zuscik MJ, O'Keefe RJ, Schwarz EM (2012) PTH enhanced structural allograft healing is associated with decreased angiopoietin-2 mediated arteriogenesis, mast cell accumulation and fibrosis. J Bone Miner Res 18:1–34Google Scholar
  5. 5.
    Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O'Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20(12):2124–2137CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM, Awad H, Guldberg R, Drissi H, Puzas JE, Boyce B, Zhang X, O'Keefe RJ (2009) Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 24(2):251–264 [Research Support, N.I.H., Extramural]CrossRefPubMedGoogle Scholar
  7. 7.
    Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O'Keefe RJ, Zhang X (2004) A novel murine segmental femoral graft model. J Orthop Res 22(6):1254–1260CrossRefPubMedGoogle Scholar
  8. 8.
    Xie C, Ming X, Wang Q, Schwarz EM, Guldberg RE, O'Keefe RJ, Zhang X (2008) COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 43(6):1075–1083CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J, Beecham EJ, Gertzman AA, Spilker M, Zhang X, O'Keefe RJ, Awad HA, Schwarz EM (2011) Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol Ther 19(8):1416–1425CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dhillon RS, Xie C, Tyler W, Calvi LM, Awad HA, Zuscik MJ, O'Keefe RJ, Schwarz EM (2012) PTH-enhanced structural allograft healing is associated with decreased angiopoietin-2-mediated arteriogenesis, mast cell accumulation, and fibrosis. J Bone Miner Res 28(3):586–597CrossRefGoogle Scholar
  11. 11.
    Program NLAS (2012) Ketamine-xylazine combination for rodent anesthesia. New York: NIH. http://ncifrederick.cancer.gov/rtp/lasp/intra/acuc/beth/KetamineXylazine.asp. Accessed 13 Nov 2012Google Scholar
  12. 12.
    Pritchett-Corning KR, Luo Y, Mulder GB, White WJ (2011) Principles of rodent surgery for the new surgeon. J Visual Exp 2011(47):[Video-Audio Media]Google Scholar
  13. 13.
    Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O'Keefe RJ (2002) Cyclo-oxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109(11):1405–1415 [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Robinder S. Dhillon
    • 1
  • Longze Zhang
    • 1
  • Edward M. Schwarz
    • 1
  • Brendan F. Boyce
    • 1
  • Chao Xie
    • 1
  1. 1.University of Rochester Medical CenterRochesterUSA

Personalised recommendations