Advertisement

Generation of Closed Transverse Fractures in Small Animals

  • Anthony De Giacomo
  • Elise F. Morgan
  • Louis C. Gerstenfeld
Part of the Methods in Molecular Biology book series (MIMB, volume 1130)

Abstract

The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented, and general considerations when setting up an experiment using this model are described.

Keywords

Fracture Healing Surgical Model Rodent 

Notes

Acknowledgments

This work is supported by NIH Grants AR056637 and AR062642.

References

  1. 1.
    Salisbury-Palomares KT et al (2009) Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res 27:1123–1132CrossRefGoogle Scholar
  2. 2.
    Miclau T et al (2007) Effects of delayed stabilization on fracture healing. J Orthop Res 25(12):1552–1558CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lu C et al (2011) Mechanical stability affects angiogenesis during early fracture healing. J Orthop Trauma 25(8):494–499CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu YY et al (2012) Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp 11:62Google Scholar
  5. 5.
    Bonnarens F, Einhorn T (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2(1):97–101CrossRefPubMedGoogle Scholar
  6. 6.
    Hiltunen A, Vuorio E, Aro H (1993) A standardized experimental fracture in the mouse tibia. J Orthop Res 11(2):305–312CrossRefPubMedGoogle Scholar
  7. 7.
    Kon T et al (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16(6):1004–1014CrossRefPubMedGoogle Scholar
  8. 8.
    Gerstenfeld LC et al (2006) Three dimensional reconstruction of fracture callus morphogenesis demonstrates asymmetry in callus development. J Histochem Cytochem 54(11):1215–1228CrossRefPubMedGoogle Scholar
  9. 9.
    Marturano JE et al (2008) An improved murine femur fracture device for bone healing studies. J Biomech 41(6):1222–1228CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang X et al (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109(11):1405–1415CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Colnot C et al (2003) Altered fracture repair in the absence of MMP9. Development 130(17):4123–4133CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tsuji K et al (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429CrossRefPubMedGoogle Scholar
  13. 13.
    Jepsen KJ et al (2008) Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J Bone Miner Res 23(8):1204–1216CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grimes R et al (2011) The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J Bone Miner Res 26(11):2597–2609CrossRefPubMedGoogle Scholar
  15. 15.
    Wigner NA et al (2010) Acute phosphate restriction leads to impaired fracture healing and resistance to BMP-2. J Bone Miner Res 25(4):724–733PubMedGoogle Scholar
  16. 16.
    Vortkamp A et al (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71:65–76CrossRefPubMedGoogle Scholar
  17. 17.
    Ferguson C et al (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66CrossRefPubMedGoogle Scholar
  18. 18.
    Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884CrossRefPubMedGoogle Scholar
  19. 19.
    Simon AM, Manigrasso MB, O’Connor JP (2002) Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res 17(6):963–976CrossRefPubMedGoogle Scholar
  20. 20.
    Alkhiary YM et al (2005) Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am 87(4):731–741PubMedGoogle Scholar
  21. 21.
    Kakar S et al (2007) Enhanced chondrogenesis and Wnt-signaling in parathyroid hormone treated fractures. J Bone Miner Res 22(12):1903–1912CrossRefPubMedGoogle Scholar
  22. 22.
    Gerstenfeld LC et al (2008) Comparison of bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24(2):196–208CrossRefGoogle Scholar
  23. 23.
    Einhorn TA (2003) A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am 85-A(8):1425–3CrossRefPubMedGoogle Scholar
  24. 24.
    Lu C et al (2005) Cellular basis for age-related changes in fracture repair. J Orthop Res 23(6):1300–1307CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lu C et al (2008) Effect of age on vascularization during fracture repair. J Orthop Res 26(10):1384–1389CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meyer J et al (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435CrossRefPubMedGoogle Scholar
  27. 27.
    Meyer RA Jr et al (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254CrossRefPubMedGoogle Scholar
  28. 28.
    Halloran BP et al (2002) Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 17(6):1044–1050CrossRefPubMedGoogle Scholar
  29. 29.
    Glatt V et al (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22(8):1197–1207CrossRefPubMedGoogle Scholar
  30. 30.
    Willie B et al (2009) Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res 27(5):687–693CrossRefPubMedGoogle Scholar
  31. 31.
    Gerstenfeld LC et al (2007) Selective and nonselective cyclooxygenase-2 inhibitors and experimental fracture-healing: reversibility of effects after short-term treatment. J Bone Joint Surg Am 89(1):114–125PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Anthony De Giacomo
    • 1
  • Elise F. Morgan
    • 1
  • Louis C. Gerstenfeld
    • 1
  1. 1.Boston University School of MedicineBostonUSA

Personalised recommendations