Plant-Pathogen Interactions pp 29-51

Part of the Methods in Molecular Biology book series (MIMB, volume 1127)

Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes

  • Diane G. O. Saunders
  • Joe Win
  • Sophien Kamoun
  • Sylvain Raffaele


Genome architecture often reflects an organism’s lifestyle and can therefore provide insights into gene function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, characteristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis and visualization of whole genome architecture. The method is flexible, combining whole genome architecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis of specific values associated with genes such as gene expression and sequence polymorphisms, according to genome architecture. This method enables the investigation of whole genome architecture and reveals local properties of genomic neighborhoods in a clear and concise manner.

Key words

Genome architecture Data binning Intergenic Visualization Heatmap Effectors Filamentous plant pathogen 


  1. 1.
    Koonin EV, Wolf YI (2010) Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 11:487–498PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Haas BJ et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398PubMedCrossRefGoogle Scholar
  3. 3.
    Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Loren van Themaat EV, Brown JKM, Butcher SA, Gurr SJ (2010) Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science 330:1543PubMedCrossRefGoogle Scholar
  4. 4.
    Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci 108:9166PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Raffaele S, Win J, Cano L, Kamoun S (2010) Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 11:637PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    van Damme M, Cano L, Oliva R, Schornack S, Segretin ME, Kamoun S, Raffaele, S (2012) Evolutionary and Functional Dynamics of Oomycete Effector Genes. In: Martin F, Kamoun S (eds) Effectors in plant-microbe interactions. Wiley, pp 103–122Google Scholar
  7. 7.
    Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G (2011) Understanding and Exploiting Late Blight Resistance in the Age of Effectors. Annu Rev Phytopathol 49:507–531PubMedCrossRefGoogle Scholar
  8. 8.
    Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430PubMedGoogle Scholar
  9. 9.
    Pain A et al (2008) The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455:799–803PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lévesque CA et al (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes. Plant Cell 19:2349–2369PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, MacLean D (2011) Gene Gain and Loss during Evolution of Obligate Parasitism in the White Rust Pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sharma VK, Kumar N, Prakash T, Taylor TD (2012) Fast and Accurate Taxonomic Assignments of Metagenomic Sequences Using MetaBin. PLoS One 7:e34030PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Xiong X, Xu W, Eberlin LS, Wiseman JM, Fang X, Jiang Y, Huang Z, Zhang Y, Cooks RG, Ouyang Z (2012) Data Processing for 3D Mass Spectrometry Imaging. J Am Soc Mass Spectrom 23:1147–1156PubMedCrossRefGoogle Scholar
  15. 15.
    Mendhurwar KA, Devabhaktuni VK, Raut R (2008) Binning algorithm for accurate computer aided device modeling. In: International symposium on circuits and systems. pp 2773–2776Google Scholar
  16. 16.
    Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RHY, Zody MC, Kunjeti SG, Donofrio NM (2010) Genome Evolution Following Host Jumps in the Irish Potato Famine Pathogen Lineage. Science 330:1540PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Diane G. O. Saunders
    • 3
  • Joe Win
    • 3
  • Sophien Kamoun
    • 3
  • Sylvain Raffaele
    • 1
    • 2
  1. 1.The Sainsbury LaboratoryNorwich Research ParkNorwichUK
  2. 2.Laboratoire des Interactions Plantes-Microorganismes (LIPM)UMR441 INRA—UMR2594 CNRSCastanet-TolosanFrance
  3. 3.The Sainsbury LaboratoryNorwichUK

Personalised recommendations