Production of RXLR Effector Proteins for Structural Analysis by X-Ray Crystallography

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1127)

Abstract

Structural analysis of RXLR effector proteins from oomycete plant pathogens is an emerging area of research. These studies are aimed at understanding the molecular basis of how these proteins manipulate plant cells to promote infection and also to help define how they can lead to activation of the plant innate immune system. Here, we describe a medium-throughput procedure for cloning and expression testing oomycete RXLR proteins in Escherichia coli. We also describe methods for purification of soluble protein and crystallization, with the aim of determining three-dimensional structures by X-ray crystallography. The procedures are generally applicable to any research program where the production of soluble recombinant protein in E. coli has proven difficult, or where there is a desire to evaluate E. coli thoroughly as a host before considering alternative hosts for heterologous expression.

Key words

Effector Oomycete RXLR Heterologous expression pOPIN vectors E. coli Protein Crystal Diffraction X-ray crystallography Structure 

References

  1. 1.
    Mukhopadhyay A (1997) Inclusion bodies and purification of proteins in biologically active forms. In: Scheper TH (ed) Advances in mechanical engineering/biotechnology, vol 56. Springer, BerlinGoogle Scholar
  2. 2.
    Swietnicki W (2006) Folding aggregated proteins into functionally active forms. Curr Opin Biotechnol 17:367–372PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen LH, Jensen DB, Burgess RR (1993) Overproduction and purification of σ32, the Escherichia coli heat shock transcription factor. Protein Expr Purif 4:425–433PubMedCrossRefGoogle Scholar
  4. 4.
    Hart DJ, Tarendeau F (2006) Combinatorial library approaches for improving soluble protein expression in Escherichia coli. Acta Crystallogr D Biol Crystallogr 62:19–26PubMedCrossRefGoogle Scholar
  5. 5.
    Hartley JL (2006) Cloning technologies for protein expression and purification. Curr Opin Biotechnol 17:359–366PubMedCrossRefGoogle Scholar
  6. 6.
    Glaser V (1999) Custom DNA synthesis—a crowded marketplace spurs competition in quality and price. Gen Eng News 19:10Google Scholar
  7. 7.
    pET System Manual, 11th Edition (2006) Novagen Technical Bulletin TB055. Merck (USA)Google Scholar
  8. 8.
    Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358PubMedCrossRefGoogle Scholar
  9. 9.
    Park SJ, Lee SK, Lee BJ (2002) Effect of tandem rare codon substitution and vector–host combinations on the expression of the EBV gp110 C-terminal domain in Escherichia coli. Protein Expr Purif 24:470–480PubMedCrossRefGoogle Scholar
  10. 10.
    Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376PubMedCrossRefGoogle Scholar
  11. 11.
    Hortsch R, Weuster-Botz D (2011) Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Appl Microbiol Biotechnol 90:69–76PubMedCrossRefGoogle Scholar
  12. 12.
    Xu JS, Li WJ, Wu J, Zhang Y, Zhu Z, Liu JJ, Hu ZY (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73:780–788PubMedCrossRefGoogle Scholar
  13. 13.
    Schein CH, Noteborn M (1988) Formation of soluble recombinant proteins in Escherichia coli is favoured by lower growth temperature. Bio/Technology 6:291–294CrossRefGoogle Scholar
  14. 14.
    Prasad S, Khadatare PB, Roy I (2011) Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 77:4603–4609PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    FerreDAmare A, Burley SK (1997) Dynamic light scattering in evaluating crystallizability of macromolecules. Methods Enzymol 276: 157–166CrossRefGoogle Scholar
  16. 16.
    Nettleship JE, Brown J, Groves MR, Geerlof A (2008) Methods for protein characterization by mass spectrometry, thermal shift (thermofluor) assay, and multi-angle or static light scattering. Methods Mol Biol 426: 219–318Google Scholar
  17. 17.
    Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115–118PubMedCrossRefGoogle Scholar
  18. 18.
    Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–803PubMedCrossRefGoogle Scholar
  19. 19.
    Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15: 483–492PubMedCrossRefGoogle Scholar
  20. 20.
    Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hauptman H (1997) Phasing methods for protein crystallography. Curr Opin Struct Biol 7:672–680PubMedCrossRefGoogle Scholar
  22. 22.
    Boutemy LS, King SRF, Win J, Hughes RK, Clarke TA, Blumenschein MA, Kamoun S, Banfield MJ (2011) Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. J Biol Chem 286:35834–35842PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sohn KH, Hughes RK, Piquerez SJ, Jones JDG, Banfield MJ (2012) Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of plant immunity. Proc Natl Acad Sci U S A 109: 16371–16376PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wirthmueller L, Jones JD, Banfield MJ (2011) Crystallization and preliminary X-ray analysis of the RXLR-type effector RXLR3 from the oomycete pathogen Hyaloperonospora arabidopsidis. Acta Crystallogr F Struct Biol Cryst Commun 67:1417–1420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Department of Biological Chemistry, John Innes CentreNorwich Research ParkNorwichUK

Personalised recommendations