Advertisement

DIGE-ABPP by Click Chemistry: Pairwise Comparison of Serine Hydrolase Activities from the Apoplast of Infected Plants

  • Tram Ngoc Hong
  • Renier A. L. van der HoornEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1127)

Abstract

Activity-based protein profiling (ABPP) is a targeted functional proteomics method that displays the active proteome by using small molecule probes that react covalently with the active sites of protein classes. Comparison of activity profiles from two different samples is not always easy, especially when using probes that generate too many signals. For accurate comparison of protein activities between two proteomes, we developed difference gel electrophoresis ABPP (DIGE-ABPP), which compares two fluorescently labeled proteomes in the same gel lane. This protocol describes the labeling of two proteomes with alkyne-labeled probes, followed by the coupling with two different fluorophores using “click chemistry,” the separation of mixed proteomes on protein gels, and the quantification and comparison of the activity profiles. We applied DIGE-ABPP to investigate differential serine hydrolases activities in the apoplast of Nicotiana benthamiana challenged with Pseudomonas syringae p.v. tomato DC3000.

Key words

Activity-based protein profiling ABPP Click chemistry Fluorophosphonate FP probe Serine hydrolase Apoplast Pseudomonas syringae DC3000 Nicotiana benthamiana 

Notes

Acknowledgments

We would like to thank Dr. Sabrina Nickel and Prof. Dr. Markus Kaiser (University of Essen-Duisburg, Germany) for providing FP-alkyne. This work was financially supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft (project HO3983/7-1) and COST program CM1004.

References

  1. 1.
    Kolodziejek I, Van der Hoorn RAL (2010) Mining the active plant proteome in plant science and biotechnology. Curr Opin Biotechnol 21:225–233PubMedCrossRefGoogle Scholar
  2. 2.
    Kaschani F, Verhelst SHL, Van Swieten PF, Verdoes M, Wong C-S, Wang Z, Kaiser M, Overkleeft HS, Bogyo M, Van der Hoorn RAL (2009) Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using ‘click-chemistry’. Plant J 57:373–385PubMedCrossRefGoogle Scholar
  3. 3.
    Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry. Chem Biol 11:535–546PubMedCrossRefGoogle Scholar
  4. 4.
    Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96:14694–14699PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, Gobatto E, Rietz S, Parker JE (2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6:e1000970PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Tornero P, Conejero V, Vera P (1997) Identification of a new pathogen-induced member of subtilisin-like processing protease family from plants. J Biol Chem 272:14414–14419CrossRefGoogle Scholar
  8. 8.
    Oh IS, Park AR, Bae MS, Kwong SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2007) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847CrossRefGoogle Scholar
  9. 9.
    Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, Van der Hoorn RAL (2009) Diversity of serine hydrolase activities of non-challenged and Botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 8:1082–1093PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kaschani F, Nickel S, Pandey B, Cravatt BF, Kaiser M, Van der Hoorn RAL (2012) Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP. Bioorg Med Chem 20:597–600PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kaschani F, Gu C, Van der Hoorn RAL (2012) Activity-based protein profiling of infected plants. Methods Mol Biol 835:47–59PubMedCrossRefGoogle Scholar
  12. 12.
    Wei CF, Kvitko BH, Shimizu R, Crabill JE, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type II effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46PubMedCrossRefGoogle Scholar
  13. 13.
    Joosten MH (2012) Isolation of apoplastic fluid from leaf tissue by the vacuum infiltration centrifugation technique. Methods Mol Biol 835:603–610PubMedCrossRefGoogle Scholar
  14. 14.
    GE Healthcare Life Sciences handbook: imaging principles and methods for ImageQuantTL 8.1 (2012). www.gelifesciences.com article 29-0203-01

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Tram Ngoc Hong
    • 1
  • Renier A. L. van der Hoorn
    • 1
    Email author
  1. 1.The Plant Chemetics Laboratory, Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations