Galaxy as a Platform for Identifying Candidate Pathogen Effectors

  • Peter J. A. CockEmail author
  • Leighton Pritchard
Part of the Methods in Molecular Biology book series (MIMB, volume 1127)


The Galaxy web platform provides an integrated system for its users to run multiple computational tools, linking their output in order to perform sophisticated analysis without requiring any programming or installation of software beyond a modern web-browser. Analyses can be saved as reusable workflows, and shared with other Galaxy users, allowing them to easily perform the same analysis or protocol on their own data.

We describe example Galaxy workflows for the identification of candidate pathogen effector proteins. Our main example focuses on nematode plant pathogens where signal peptide and transmembrane prediction tools are used to identify predicted secreted proteins.

Key words

Effectors Workflow Pipeline Galaxy Classification Bioinformatics Sequence analysis Genomics High-throughput screening 



The James Hutton Institute receives funding from the Scottish Government.


  1. 1.
    Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Blankenberg D, Kuster von G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19:Unit 19.10.1–21Google Scholar
  3. 3.
    Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J (2010) Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinforma 11(suppl 12):S4CrossRefGoogle Scholar
  4. 4.
    Maclean D, Kamoun S (2012) Big data in small places. Nat Biotechnol 30(1):33–34PubMedCrossRefGoogle Scholar
  5. 5.
    Cock PJ, Grüning BA, Paszkiewicz K, Pritchard L (2013) Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ 1:e167
  6. 6.
    Jones JT, Kumar A, Pylypenko LA, Thirugnanasambandam A, Castelli L, Chapman S, Cock PJA, Grenier E, Lilley CJ, Phillips MS, Blok VC (2009) Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Mol Plant Pathol 10(6):815–828PubMedCrossRefGoogle Scholar
  7. 7.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4): 783–795PubMedCrossRefGoogle Scholar
  8. 8.
    Krogh A, Larsson B, von Heijne G, Sonnhammer E (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  9. 9.
    Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, Mcveigh P, Takanashi T, Tsai IJ, Assefa SA, Cock PJA, Otto TD, Hunt M, Reid AJ, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson MC, Miwa J, Maule AG, Sahashi N, Jones JT, Berriman M (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 7(9):e1002219PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, Van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450(7166):115–118PubMedCrossRefGoogle Scholar
  11. 11.
    Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19(8):2349–2369PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bhattacharjee S, Hiller NL, Liolios K, Win J, Kanneganti T-D, Young C, Kamoun S, Haldar K (2006) The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathog 2(5):e50PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinforma 10:421CrossRefGoogle Scholar
  14. 14.
    Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24(3):319–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Information and Computational SciencesThe James Hutton InstituteDundeeUK

Personalised recommendations