Probing Biological Samples in High-Resolution Microscopy: Making Sense of Spots

  • Felipe Opazo
Protocol
Part of the Neuromethods book series (NM, volume 86)

Abstract

In recent years, microscopy techniques have reached high sensitivities and excellent resolutions, far beyond the diffraction limit. However, images of biological specimens obtained with super-resolution instruments have the tendency of being dominated by spots. The quality or faithfulness of the observed structure depends in great manner on the labeling density achieved by affinity probes. To obtain the required high labeling densities, several problems still need to be addressed. Prevalent staining methodologies are mainly based on antibodies. Due to their large size (~10–15 nm, ~150 kDa), antibodies penetrate poorly into biological samples, find only few epitopes and position the fluorophores far from the intended targets (relative to the resolutions currently achieved). These problems drastically limit imaging efforts, irrespective of the quality of the microscopes. Recently, RNA-based affinity probes (termed aptamers, ~15 kDa) and camelid-derived small single-chain antibodies (termed nanobodies, ~13 kDa) are offering a possible solution. Both of these probes have an improved imaging performance, not only for diffraction-unlimited microscopy techniques but also for conventional microscopy. The effort to develop new affinity probes of smaller dimensions should go together with improving the preservation of biological samples. The extraordinary amount of details obtained by super-resolution microscopy also enhances the detection of artifacts that fixatives and detergents cause to cellular structures. Therefore, thorough optimizations of current methodologies of sample preparation are necessary to achieve stainings capable of representing genuine biological structures and accurate protein distributions. Eventually, new fixation and permeabilization procedures able to retain more faithfully the biological structure under investigation need to be developed in the light of the current microscopy technologies.

Key words

Affinity probes Antibodies Aptamers Nanobodies VHH Super-resolution 

References

  1. 1.
    Hell SW (2007) Far-field optical nanoscopy. Science (New York, NY) 316:1153–1158CrossRefGoogle Scholar
  2. 2.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  3. 3.
    Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314PubMedCrossRefGoogle Scholar
  4. 4.
    Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) a simple, versatile method for GfP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584Google Scholar
  6. 6.
    Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for superresolution microscopy. Nat Methods 9:938–939PubMedCrossRefGoogle Scholar
  7. 7.
    McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lakadamyali M, Babcock H, Bates M, Zhuang X, Lichtman J (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7:e30826PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331PubMedCrossRefGoogle Scholar
  10. 10.
    Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208PubMedCrossRefGoogle Scholar
  11. 11.
    Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci 109:4455–4460PubMedCrossRefGoogle Scholar
  12. 12.
    Lisenbee CS, Karnik SK, Trelease RN (2003) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic (Copenhagen, Denmark) 4:491–501CrossRefGoogle Scholar
  13. 13.
    Opazo F, Punge A, Bückers J, Hoopmann P, Kastrup L, Hell SW, Rizzoli SO (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic (Copenhagen, Denmark) 11:800–812CrossRefGoogle Scholar
  14. 14.
    Rappoport JZ, Simon SM (2008) A functional GFP fusion for imaging clathrin-mediated endocytosis. Traffic (Copenhagen, Denmark) 9:1250–1255CrossRefGoogle Scholar
  15. 15.
    Coons AH, Creech HJ, Jones RN (1941)Immunological properties of an antibody containing a fluorescent group. Exp Biol Med (Maywood) 47:200–202Google Scholar
  16. 16.
    Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304PubMedCrossRefGoogle Scholar
  17. 17.
    Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939PubMedCrossRefGoogle Scholar
  18. 18.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175PubMedCrossRefGoogle Scholar
  19. 19.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science (New York, NY) 319:810–813CrossRefGoogle Scholar
  20. 20.
    Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, NY) 313:1642–1645CrossRefGoogle Scholar
  22. 22.
    Linde S, Kasper R, Heilemann M, Sauer M (2008) Photoswitching microscopy with standard fluorophores. Appl Phys B 93:725–731CrossRefGoogle Scholar
  23. 23.
    Zhuang X (2009) Nano-imaging with Storm. Nat Photonics 3:365–367PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43PubMedCrossRefGoogle Scholar
  25. 25.
    Lang T, Rizzoli SO (2010) Membrane protein clusters at nanoscale resolution: more than pretty pictures. Physiology (Bethesda, MD) 25:116–124CrossRefGoogle Scholar
  26. 26.
    Tanaka KAK, Suzuki KGN, Shirai YM, Shibutani ST, Miyahara MSH, Tsuboi H, Yahara M, Yoshimura A, Mayor S, Fujiwara TK, Kusumi A (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7:865–866PubMedCrossRefGoogle Scholar
  27. 27.
    Kilár F, Simon I, Lakatos S, Vonderviszt F, Medgyesi GA, Závodszky P (1985) Conformation of human IgG subclasses in solution. Small-angle X-ray scattering and hydrodynamic studies. Eur J Biochem 147:17–25PubMedCrossRefGoogle Scholar
  28. 28.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448PubMedCrossRefGoogle Scholar
  29. 29.
    Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302PubMedGoogle Scholar
  30. 30.
    Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455PubMedCrossRefGoogle Scholar
  31. 31.
    Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  33. 33.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY) 249:505–510CrossRefGoogle Scholar
  34. 34.
    Yan AC, Levy M (2009) Aptamers and aptamer targeted delivery. RNA Biol 6:316–320PubMedCrossRefGoogle Scholar
  35. 35.
    Janas T, Janas T (2011) The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 16:25–39PubMedCrossRefGoogle Scholar
  36. 36.
    Werner A, Konarev PV, Svergun DI, Hahn U (2009) Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering. Anal Biochem 389:52–62PubMedCrossRefGoogle Scholar
  37. 37.
    Chelliserrykattil J, Ellington AD (2004) Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22:1155–1160PubMedCrossRefGoogle Scholar
  38. 38.
    Foy JW-D, Rittenhouse K, Modi M, Patel M (2007) Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J Ocul Pharmacol Ther 23:452–466PubMedCrossRefGoogle Scholar
  39. 39.
    Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962PubMedCrossRefGoogle Scholar
  40. 40.
    Zeng Z, Zhang P, Zhao N, Sheehan AM, Tung C-H, Chang C-C, Zu Y (2010) Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues. Mod Pathol 23:1553–1558PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hopwood D (1969) Fixatives and fixation: a review. Histochem J 1:323–360PubMedCrossRefGoogle Scholar
  42. 42.
    Buus S, Rockberg J, Forsstr Oumlm BO, Nilsson P, Uhlén M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteom 11:1790–1800Google Scholar
  43. 43.
    Barysch SV, Aggarwal S, Jahn R, Rizzoli SO (2009) Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proc Natl Acad Sci 106:9697–9702PubMedCrossRefGoogle Scholar
  44. 44.
    Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749PubMedCrossRefGoogle Scholar
  45. 45.
    Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, Opazo F, Rizzoli SO, Yan A, Levy M (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids 1:e21PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R, Mayor S, Barrantes FJ (2008) Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. J Cell Biol 181:1179–1193PubMedCrossRefGoogle Scholar
  48. 48.
    Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021PubMedCrossRefGoogle Scholar
  49. 49.
    Angelides KJ (1981) Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry 20:4107–4118PubMedCrossRefGoogle Scholar
  50. 50.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science (New York, NY) 317:1749–1753CrossRefGoogle Scholar
  51. 51.
    Löschberger A, van de Linde S, Dabauvalle M-C, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575PubMedCrossRefGoogle Scholar
  52. 52.
    Hopwood D (1967) Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into liver. J Anat 101:83–92PubMedGoogle Scholar
  53. 53.
    Hopwood D (1972) Theoretical and practical aspects of glutaraldehyde fixation. Histochem J 4:267–303PubMedCrossRefGoogle Scholar
  54. 54.
    Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. JCB 17:19–58PubMedCrossRefGoogle Scholar
  55. 55.
    Tagliaferro P, Tandler CJ, Ramos AJ, Pecci Saavedra J, Brusco A (1997) Immunofluorescence and glutaraldehyde fixation. A new procedure based on the Schiff-quenching method. J Neurosci Methods 77:191–197PubMedCrossRefGoogle Scholar
  56. 56.
    Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. JCB 34:207–217PubMedCrossRefGoogle Scholar
  57. 57.
    Matsubayashi Y, Iwai L, Kawasaki H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Felipe Opazo
    • 1
  1. 1.Department of Neuro- and Sensory PhysiologyUniversity of Göttingen Medical CenterGöttingenGermany

Personalised recommendations