Advertisement

Diversity and Evolution of Spliceosomal Systems

  • Scott William Roy
  • Manuel Irimia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1126)

Abstract

The intron–exon structures of eukaryotic nuclear genomes exhibit tremendous diversity across different species. The availability of many genomes from diverse eukaryotic species now allows for the reconstruction of the evolutionary history of this diversity. Consideration of spliceosomal systems in comparative context reveals a surprising and very complex portrait: in contrast to many expectations, gene structures in early eukaryotic ancestors were highly complex and “animal or plant-like” in many of their spliceosomal structures; pronounced simplification of gene structures, splicing signals, and spliceosomal machinery has occurred independently in many lineages. In addition, next-generation sequencing of transcripts has revealed that alternative splicing is more common across eukaryotes than previously thought. However, much alternative splicing in diverse eukaryotes appears to play a regulatory role: alternative splicing fulfilling the most famous role for alternative splicing—production of multiple different proteins from a single gene—appears to be much more common in animal species than in nearly any other lineage.

Key words

Spliceosomal introns Evolution Alternative splicing Eukaryotes Convergence 

References

  1. 1.
    Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066PubMedGoogle Scholar
  2. 2.
    Andersson JO, Sjögren AM, Horner DS et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51PubMedCentralPubMedGoogle Scholar
  3. 3.
    Lane CE, van den Heuvel K, Kozera C et al (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913PubMedCentralPubMedGoogle Scholar
  4. 4.
    Irimia M, Penny D, Roy SW (2007) Co-evolution of genomic intron number and splice sites. Trends Genet 23:321–325PubMedGoogle Scholar
  5. 5.
    Irimia M, Roy SW (2008) Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet 4:e1000148PubMedCentralPubMedGoogle Scholar
  6. 6.
    Dávila LM, Rosenblad MA, Samuelsson T (2008) Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 36:3001–3010Google Scholar
  7. 7.
    Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22PubMedCentralPubMedGoogle Scholar
  8. 8.
    Vibranovski M, Sakabe N, Oliveira R et al (2005) Signs of ancient and modern exon-shuffling are correlated to the distribution of ancient and modern domains along proteins. J Mol Evol 61:341–350PubMedGoogle Scholar
  9. 9.
    Penny D, Hoeppner MP, Poole AM et al (2009) An overview of the introns-first theory. J Mol Evol 69:527–540PubMedGoogle Scholar
  10. 10.
    Logsdon J (1998) The recent origins of spliceosomal introns revisited. Curr Opin Genet Dev 8:637–648PubMedGoogle Scholar
  11. 11.
    Siegel TN, Hekstra DR, Wang X et al (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38: 4946–4957PubMedCentralPubMedGoogle Scholar
  12. 12.
    Kolev NG, Franklin JB, Carmi S et al (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6:e1001090PubMedCentralPubMedGoogle Scholar
  13. 13.
    Tsai IJ, Zarowiecki M, Holroyd N et al (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496(7443):57–63PubMedCentralPubMedGoogle Scholar
  14. 14.
    Amit M, Donyo M, Hollander D et al (2012) Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep 1:543–556PubMedGoogle Scholar
  15. 15.
    Kol G, Lev-Maor G, Ast G (2005) Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet 14:1559–1568PubMedGoogle Scholar
  16. 16.
    Gao K, Masuda A, Matsuura T et al (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36:2257–2267PubMedCentralPubMedGoogle Scholar
  17. 17.
    Taliaferro JM, Alvarez N, Green RE et al (2011) Evolution of a tissue-specific splicing network. Genes Dev 25:608–620PubMedCentralPubMedGoogle Scholar
  18. 18.
    Brooks AN, Yang L, Duff MO et al (2011) Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res 21:193–202PubMedCentralPubMedGoogle Scholar
  19. 19.
    Irimia M, Denuc A, Burguera D et al (2011) Stepwise assembly of the nova-regulated alternative splicing network in the vertebrate brain. Proc Natl Acad Sci USA 108:5319–5324PubMedCentralPubMedGoogle Scholar
  20. 20.
    Jensen KB, Dredge BK, Stefani G et al (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359–371PubMedGoogle Scholar
  21. 21.
    Fujisaki K, Ishikawa M (2008) Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication. Virology 380:402–411PubMedGoogle Scholar
  22. 22.
    Roy SW, Irimia M (2009) Splicing in the eukaryotic ancestor: form, function and dysfunction. Trends Ecol Evol 24:447–455PubMedGoogle Scholar
  23. 23.
    Barbosa-Morais NL, Carmo-Fonseca M, Aparicio S (2006) Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res 16:66–77PubMedCentralPubMedGoogle Scholar
  24. 24.
    Reddy AS, Shad AG (2011) Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA 2:875–889PubMedGoogle Scholar
  25. 25.
    Plass M, Agirre E, Reyes D et al (2008) Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 24:590–594PubMedGoogle Scholar
  26. 26.
    McGuire A, Pearson M, Neafsey D et al (2008) Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol 9:R50PubMedCentralPubMedGoogle Scholar
  27. 27.
    Marquez Y, Brown JW, Simpson C et al (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195PubMedCentralPubMedGoogle Scholar
  28. 28.
    Carvalho RF, Feijão CV, Duque P (2012) On the physiological significance of alternative splicing events in higher plants. Protoplasma 250(3):639–650PubMedGoogle Scholar
  29. 29.
    Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355PubMedGoogle Scholar
  30. 30.
    Ram O, Ast G (2007) SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet 23:5–7PubMedGoogle Scholar
  31. 31.
    Russell AG, Charette JM, Spencer DF et al (2006) An early evolutionary origin for the minor spliceosome. Nature 443:863–866PubMedGoogle Scholar
  32. 32.
    Burge CB, Padgett RA, Sharp PA (1998) Evolutionary fates and origins of U12-type introns. Mol Cell 2:773–785PubMedGoogle Scholar
  33. 33.
    Alioto TS (2007) U12DB: a database of orthologous U12-type spliceosomal introns. Nucleic Acids Res 35:D110–D115PubMedCentralPubMedGoogle Scholar
  34. 34.
    Roy SW, Fedorov A, Gilbert W (2003) Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA 100:7158–7162PubMedCentralPubMedGoogle Scholar
  35. 35.
    Tarrío R, Ayala FJ, Rodríguez-Trelles F (2008) Alternative splicing: a missing piece in the puzzle of intron gain. Proc Natl Acad Sci USA 105:7223–7228PubMedCentralPubMedGoogle Scholar
  36. 36.
    Rogozin IB, Lyons-Weiler J, Koonin EV (2000) Intron sliding in conserved gene families. Trends Genet 16:430–432PubMedGoogle Scholar
  37. 37.
    Perler F, Efstratiadis A, Lomedico P et al (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566PubMedGoogle Scholar
  38. 38.
    Logsdon J Jr, Tyshenko M, Dixon C et al (1995) Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc Natl Acad Sci USA 92:8507–8511PubMedCentralPubMedGoogle Scholar
  39. 39.
    Archibald J, O'Kelly C, Doolittle W (2002) The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. Mol Biol Evol 19:422–431PubMedGoogle Scholar
  40. 40.
    Rogozin I, Sverdlov A, Babenko V et al (2005) Analysis of evolution of exon–intron structure of eukaryotic genes. Brief Bioinform 6:118–134PubMedGoogle Scholar
  41. 41.
    Roy SW, Penny D (2007) A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain. Mol Biol Evol 24: 1447–1457PubMedGoogle Scholar
  42. 42.
    Ahmadinejad N, Dagan T, Gruenheit N et al (2010) Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 10:57PubMedCentralPubMedGoogle Scholar
  43. 43.
    Yoshihama M, Nakao A, Nguyen HD et al (2006) Analysis of ribosomal protein gene structures: implications for intron evolution. PLoS Genet 2:e25PubMedCentralPubMedGoogle Scholar
  44. 44.
    Roy SW, Gilbert W (2005) Complex early genes. Proc Natl Acad Sci USA 102: 1986–1991PubMedCentralPubMedGoogle Scholar
  45. 45.
    Csuros M (2006) On the estimation of intron evolution. PLoS Comput Biol 2:e84PubMedCentralPubMedGoogle Scholar
  46. 46.
    Csuros M (2008) Malin: maximum likelihood analysis of intron evolution in eukaryotes. Bioinformatics 24:1538–1539PubMedCentralPubMedGoogle Scholar
  47. 47.
    Csurös M (2005). Likely scenarios of intron evolution. In: Third RECOMB Satellite workshop on comparative genomics. Springer LNCS 3678, p 47–60Google Scholar
  48. 48.
    Csurös M, Rogozin IB, Koonin EV (2008) Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol Biol Evol 25:903–911PubMedGoogle Scholar
  49. 49.
    Nguyen H, Yoshihama M, Kenmochi N (2005) New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 1:e79PubMedCentralPubMedGoogle Scholar
  50. 50.
    Carmel L, Wolf YI, Rogozin IB et al (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 17:1034–1044PubMedCentralPubMedGoogle Scholar
  51. 51.
    Carmel L, Rogozin IB, Wolf YI et al (2009) A maximum likelihood method for reconstruction of the evolution of eukaryotic gene structure. Methods Mol Biol 541:357–371PubMedCentralPubMedGoogle Scholar
  52. 52.
    Rogozin IB, Carmel L, Csuros M et al (2012) Origin and evolution of spliceosomal introns. Biol Direct 7:11PubMedCentralPubMedGoogle Scholar
  53. 53.
    Koonin EV (2009) Intron-dominated genomes of early ancestors of eukaryotes. J Hered 100:618–623PubMedCentralPubMedGoogle Scholar
  54. 54.
    Roy SW, Irimia M, Penny D (2006) Very little intron gain in Entamoeba histolytica genes laterally transferred from prokaryotes. Mol Biol Evol 23:1824–1827PubMedGoogle Scholar
  55. 55.
    Roy SW, Penny D (2006) Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses. Mol Biol Evol 23:2259–2262PubMedGoogle Scholar
  56. 56.
    Stajich JE, Dietrich FS, Roy SW (2007) Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol 8:R223PubMedCentralPubMedGoogle Scholar
  57. 57.
    Coulombe-Huntington J, Majewski J (2007) Intron loss and gain in Drosophila. Mol Biol Evol 24:2842–2850PubMedGoogle Scholar
  58. 58.
    Li W, Tucker AE, Sung W et al (2009) Extensive, recent intron gains in Daphnia populations. Science 326:1260–1262PubMedGoogle Scholar
  59. 59.
    Worden AZ, Lee JH, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272PubMedGoogle Scholar
  60. 60.
    van der Burgt A, Severing E, de Wit PJGM et al (2012) Birth of new spliceosomal introns in fungi by multiplication of introner-like elements. Curr Biol 22(13):1260–1265PubMedGoogle Scholar
  61. 61.
    Roy SW, Irimia M (2012) Genome evolution: where do new introns come from? Curr Biol 22:R529–R531PubMedGoogle Scholar
  62. 62.
    Lim KH, Ferraris L, Filloux ME et al (2011) Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 108:11093–11098PubMedCentralPubMedGoogle Scholar
  63. 63.
    Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5:773–782PubMedGoogle Scholar
  64. 64.
    Schwartz S, Silva J, Burstein D et al (2008) Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 18:88–103PubMedCentralPubMedGoogle Scholar
  65. 65.
    Tolstrup N, Rouze P, Brunak S (1997) A branch point consensus from Arabidopsis found by non-circular analysis allows for better prediction of acceptor sites. Nucleic Acids Res 25:3159–3163PubMedCentralPubMedGoogle Scholar
  66. 66.
    Vaulot D, Lepère C, Toulza E et al (2012) Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling. PLoS One 7:e39648PubMedCentralPubMedGoogle Scholar
  67. 67.
    Warnecke T, Parmley JL, Hurst LD (2008) Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes. Genome Biol 9:R29PubMedCentralPubMedGoogle Scholar
  68. 68.
    Fairbrother WG, Yeh R-F, Sharp PA et al (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013PubMedGoogle Scholar
  69. 69.
    McLysaght A, Enright AJ, Skrabanek L et al (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36PubMedCentralPubMedGoogle Scholar
  70. 70.
    Deutsch M, Long M (1999) Intron–exon structures of eukaryotic model organisms. Nucleic Acids Res 27:3219–3228PubMedCentralPubMedGoogle Scholar
  71. 71.
    Moriyama EN, Petrov DA, Hartl DL (1998) Genome size and intron size in Drosophila. Mol Biol Evol 15:770–773PubMedGoogle Scholar
  72. 72.
    Aruga J, Odaka YS, Kamiya A et al (2007) Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian. BMC Evol Biol 7:201PubMedCentralPubMedGoogle Scholar
  73. 73.
    Ogino K, Tsuneki K, Furuya H (2010) Unique genome of dicyemid mesozoan: highly shortened spliceosomal introns in conservative exon/intron structure. Gene 449:70–76PubMedGoogle Scholar
  74. 74.
    Gilson PR, Su V, Slamovits CH et al (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Proc Natl Acad Sci 103:9566–9571PubMedCentralPubMedGoogle Scholar
  75. 75.
    Russell CB, Fraga D, Hinrichsen RD (1994) Extremely short 20–33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res 22:1221–1225PubMedCentralPubMedGoogle Scholar
  76. 76.
    Gelfman S, Burstein D, Penn O et al (2012) Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res 22:35–50PubMedCentralPubMedGoogle Scholar
  77. 77.
    Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–192PubMedCentralPubMedGoogle Scholar
  78. 78.
    Lareau LF, Brooks AN, Soergel DAW et al (2007) The coupling of alternative splicing and nonsense mediated mRNA decay. In: Blencowe BJ, Graveley BR (eds) Alternative splicing in the postgenomic era. Landes Bioscience and Springer Science&Business Media, Austin, TX, pp 190–211Google Scholar
  79. 79.
    Lareau LF, Inada M, Green RE et al (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446:926–929PubMedGoogle Scholar
  80. 80.
    Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476PubMedCentralPubMedGoogle Scholar
  81. 81.
    Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415PubMedGoogle Scholar
  82. 82.
    Graveley BR, Brooks AN, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479PubMedCentralPubMedGoogle Scholar
  83. 83.
    Irimia M, Blencowe BJ (2012) Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 24:323–332PubMedGoogle Scholar
  84. 84.
    Irimia M, Rukov JL, Penny D et al (2008) Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. Mol Biol Evol 25:375–382PubMedGoogle Scholar
  85. 85.
    Irimia M, Rukov JL, Roy SW et al (2009) Quantitative regulation of alternative splicing in evolution and development. Bioessays 31:40–50PubMedGoogle Scholar
  86. 86.
    Roy M, Kim N, Xing Y et al (2008) The effect of intron length on exon creation ratios during the evolution of mammalian genomes. RNA 14:2261–2273PubMedCentralPubMedGoogle Scholar
  87. 87.
    Pleiss JA, Whitworth GB, Bergkessel M et al (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27:928–937PubMedCentralPubMedGoogle Scholar
  88. 88.
    Parenteau J, Durand M, Morin G et al (2011) Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell 147:320–331PubMedGoogle Scholar
  89. 89.
    Yin Y, Yu G, Chen Y et al (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One 7:e51853PubMedCentralPubMedGoogle Scholar
  90. 90.
    Zhao C, Waalwijk C, de Wit PJ et al (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 14:21PubMedCentralPubMedGoogle Scholar
  91. 91.
    Wang B, Guo G, Wang C et al (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087PubMedCentralPubMedGoogle Scholar
  92. 92.
    Campbell MA, Haas BJ, Hamilton JP et al (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:327PubMedCentralPubMedGoogle Scholar
  93. 93.
    Iida K, Seki M, Sakurai T et al (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 32:5096–5103PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ner-Gaon H, Halachmi R, Savaldi-Goldstein S et al (2004) Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 39:877–885PubMedGoogle Scholar
  95. 95.
    Sorber K, Dimon MT, DeRisi JL (2011) RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res 39:3820–3835PubMedCentralPubMedGoogle Scholar
  96. 96.
    Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492: 59–65PubMedGoogle Scholar
  97. 97.
    Labadorf A, Link A, Rogers MF et al (2010) Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. BMC Genomics 11:114PubMedCentralPubMedGoogle Scholar
  98. 98.
    Xiong J, Lu X, Zhou Z et al (2012) Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing. PLoS One 7:e30630PubMedCentralPubMedGoogle Scholar
  99. 99.
    Glöckner G, Golderer G, Werner-Felmayer G et al (2008) A first glimpse at the transcriptome of Physarum polycephalum. BMC Genomics 9:6PubMedCentralPubMedGoogle Scholar
  100. 100.
    Jaillon O, Bouhouche K, Gout J-F et al (2008) Translational control of intron splicing in eukaryotes. Nature 451:359–362PubMedGoogle Scholar
  101. 101.
    Wang B-B, Brendel V (2006) Molecular characterization and phylogeny of U2AF35 homologs in plants. Plant Physiol 140: 624–636PubMedCentralPubMedGoogle Scholar
  102. 102.
    Barbosa-Morais NL, Irimia M, Pan Q et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Scott William Roy
    • 1
  • Manuel Irimia
    • 2
  1. 1.Department of BiologySan Francisco State UniversitySan FranciscoUSA
  2. 2.The Donnelly CentreUniversity of TorontoTorontoCanada

Personalised recommendations