Single Molecule Approaches for Studying Spliceosome Assembly and Catalysis

  • Eric G. Anderson
  • Aaron A. Hoskins
Part of the Methods in Molecular Biology book series (MIMB, volume 1126)


Single molecule assays of splicing and spliceosome assembly can provide unique insights into pre-mRNA processing that complement other technologies. Key to these experiments is the fabrication of fluorescent molecules (pre-mRNAs and spliceosome components) and passivated glass slides for each experiment. Here we describe how to produce fluorescent RNAs by splinted RNA ligation and fluorescent spliceosome subunits by SNAP-tagging proteins in cell lysate. We then depict how to passivate glass slides with polyethylene glycol for use on an inverted microscope with objective-based total internal reflection fluorescence (TIRF) optics. Finally, we describe how to tether the pre-mRNA onto the passivated slide surface and introduce the SNAP-tagged cell lysate for analysis of spliceosome assembly by single molecule fluorescence.

Key words

Single molecule CoSMoS TIRF Colocalization Fluorescence Microscope Spliceosome Assembly Splicing RNA Ligation SNAP tag 



Eric Anderson is supported by funding to the laboratories of Melissa J. Moore (University of Massachusetts Medical School, HHMI Investigator and NIH GM053007) and Jeff Gelles (Brandeis University, NIH GM43369 and GM81648). Aaron Hoskins is funded by startup funds from the University of Wisconsin-Madison and the Wisconsin Alumni Research Foundation and NIH R00 GM079971. We thank Tucker Carrocci, Joshua Larson, and Inna Shcherbakova for critical reading of the manuscript.


  1. 1.
    Dulin D, Lipfert J, Moolman MC et al (2012) Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Methods 14:9–22Google Scholar
  2. 2.
    Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7:724–729PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman LJ, Gelles J (2012) Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 148:679–689PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Tsai A, Petrov A, Marshall RA et al (2012) Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487:390–393PubMedCrossRefGoogle Scholar
  5. 5.
    Joo C, Fareh M, Narry Kim V (2013) Bringing single-molecule spectroscopy to macromolecular protein complexes. Trends Biochem Sci 38:30–37PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hoskins AA, Gelles J, Moore MJ (2011) New insights into the spliceosome by single molecule fluorescence microscopy. Curr Opin Chem Biol 15:864–870PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Abelson J, Blanco M, Ditzler MA et al (2010) Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 17:504–512PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Friedman LJ, Chung J, Gelles J (2006) Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys J 91:1023–1031PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Selvin PR, Ha T (2008) Single Molecule Techniques. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  11. 11.
    Crawford DJ (2010) Single molecule fluorescence studies of Saccharomyces cerevisiae pre-mRNA splicing. Ph.D. dissertation, Brandeis University, Waltham, MAGoogle Scholar
  12. 12.
    Crawford DJ, Hoskins AA, Friedman LJ et al (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14:170–179PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Abelson J, Hadjivassiliou H, Guthrie C (2010) Preparation of fluorescent pre-mRNA substrates for an smFRET study of pre-mRNA splicing in yeast. Methods Enzymol 472:31–40PubMedCrossRefGoogle Scholar
  14. 14.
    Greenfeld M, Solomatin SV, Herschlag D (2011) Removal of covalent heterogeneity reveals simple folding behavior for P4–P6 RNA. J Biol Chem 286:19872–19879PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Moore MJ, Query C (1998) Uses of site-specifically modified RNAs constructed by RNA ligation. In: Smith CWJ (ed) RNA:protein interactions. Oxford University Press, New York, pp 75–108Google Scholar
  16. 16.
    Stark MR, Pleiss JA, Deras M et al (2006) An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs. RNA 12:2014–2019PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Amberg DC, Burke D, Strathern JN (2005) Methods in yeast genetics: a Cold Spring Harbor laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  18. 18.
    Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691PubMedCrossRefGoogle Scholar
  19. 19.
    Uemura S, Aitken CE, Korlach J et al (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:1012–1017PubMedCrossRefGoogle Scholar
  20. 20.
    Leslie SR, Fields AP, Cohen AE (2010) Convex lens-induced confinement for imaging single molecules. Anal Chem 82:6224–6229PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Loveland AB, Habuchi S, Walter JC et al (2012) A general approach to break the concentration barrier in single-molecule imaging. Nat Methods 9:987–992PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Miller LW, Cai Y, Sheetz MP et al (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257PubMedCrossRefGoogle Scholar
  23. 23.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89PubMedCrossRefGoogle Scholar
  24. 24.
    Ohana RF, Encell LP, Zhao K et al (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr Purif 68:110–120PubMedCrossRefGoogle Scholar
  25. 25.
    Sun X, Zhang A, Baker B et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. ChemBioChem 12:2217–2226PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao R, Rueda D (2009) RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49:112–117PubMedCrossRefGoogle Scholar
  28. 28.
    Alemán EA, Pedini HS, Rueda D (2009) Covalent-bond-based immobilization approaches for single-molecule fluorescence. ChemBioChem 10:2862–2866PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Revyakin A, Zhang Z, Coleman RA et al (2012) Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 26:1691–1702PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Swoboda M, Henig J, Cheng H-M et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–6369PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Rasnik I, Mckinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893PubMedCrossRefGoogle Scholar
  33. 33.
    Dave R, Terry DS, Munro JB et al (2009) Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys J 96:2371–2381PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Mckinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Bronson JE, Fei J, Hofman JM et al (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Greenfeld M, Pavlichin DS, Mabuchi H et al (2012) Single molecule analysis research tool (SMART): an integrated approach for analyzing single molecule data. PLoS ONE 7:e30024PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Milescu LS, Nicolai C, Bannen J, 2000–2013 QuB softwareGoogle Scholar
  38. 38.
    Sakmann B, Neher E (2009) Single-channel recording. Springer, New YorkGoogle Scholar
  39. 39.
    Schnitzer MJ, Block SM (1995) Statistical kinetics of processive enzymes. Cold Spring Harb Symp Quant Biol 60:793–802PubMedCrossRefGoogle Scholar
  40. 40.
    Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5(9):1268–1272PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Stone MD, Mihalusova M, O’Connor CM et al (2007) Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446:458–461PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ansari A, Schwer B (1995) SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J 14:4001–4009PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Eric G. Anderson
    • 1
  • Aaron A. Hoskins
    • 2
  1. 1.Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations