The Ras Superfamily of Small GTPases: The Unlocked Secrets

  • Luca Goitre
  • Eliana Trapani
  • Lorenza Trabalzini
  • Saverio Francesco Retta
Part of the Methods in Molecular Biology book series (MIMB, volume 1120)


The Ras superfamily of small GTPases is composed of more than 150 members, which share a conserved structure and biochemical properties, acting as binary molecular switches turned on by binding GTP and off by hydrolyzing GTP to GDP. However, despite considerable structural and biochemical similarities, these proteins play multiple and divergent roles, being versatile and key regulators of virtually all fundamental cellular processes. Conversely, their dysfunction plays a crucial role in the pathogenesis of serious human diseases, including cancer and developmental syndromes.

Fuelled by the original identification in 1982 of mutationally activated and transforming human Ras genes in human cancer cell lines, a variety of powerful experimental techniques have been intensively focused on discovering and studying structure, biochemistry, and biology of Ras and Ras-related small GTPases, leading to fundamental research breakthroughs into identification and structural and functional characterization of a huge number of Ras superfamily members, as well as of their multiple regulators and effectors.

In this review we provide a general overview of the major milestones that eventually allowed to unlock the secret treasure chest of this large and important superfamily of proteins.

Key words

Small GTPases Ras superfamily Posttranslational modifications of Ras GTPases Subcellular dynamics of Ras GTPases Function and regulation of Ras GTPases Signaling of Ras GTPases 


  1. 1.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846PubMedCrossRefGoogle Scholar
  2. 2.
    Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132PubMedCrossRefGoogle Scholar
  3. 3.
    Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1:2–27PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rojas AM, Fuentes G, Rausell A et al (2012) The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196:189–201PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Haigis KM, Kendall KM, Wang Y et al (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40:600–608PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701PubMedCrossRefGoogle Scholar
  8. 8.
    Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zerial M, Mcbride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedCrossRefGoogle Scholar
  10. 10.
    Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12:362–375PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Moore MS (1998) Ran and nuclear transport. J Biol Chem 273:22857–22860PubMedCrossRefGoogle Scholar
  12. 12.
    Biou V, Cherfils J (2004) Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry 43:6833–6840PubMedCrossRefGoogle Scholar
  13. 13.
    Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304PubMedCrossRefGoogle Scholar
  14. 14.
    Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004:RE13PubMedPubMedCentralGoogle Scholar
  15. 15.
    Herrmann C (2003) Ras-effector interactions: after one decade. Curr Opin Struct Biol 13: 122–129PubMedCrossRefGoogle Scholar
  16. 16.
    Pai EF, Kabsch W, Krengel U et al (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341: 209–214PubMedCrossRefGoogle Scholar
  17. 17.
    Tong L, Milburn MV, de Vos AM et al (1989) Structure of ras proteins. Science 245:244PubMedCrossRefGoogle Scholar
  18. 18.
    Milburn MV, Tong L, deVos AM et al (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945PubMedCrossRefGoogle Scholar
  19. 19.
    Schlichting I, Almo SC, Rapp G et al (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345:309–315PubMedCrossRefGoogle Scholar
  20. 20.
    Boriack-Sjodin PA, Margarit SM, Bar-Sagi D et al (1998) The structural basis of the activation of Ras by Sos. Nature 394:337–343PubMedCrossRefGoogle Scholar
  21. 21.
    Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338PubMedCrossRefGoogle Scholar
  22. 22.
    Ahearn IM, Haigis K, Bar-Sagi D et al (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13:39–51PubMedCrossRefGoogle Scholar
  23. 23.
    Willumsen BM, Christensen A, Hubbert NL et al (1984) The p21 ras C-terminus is required for transformation and membrane association. Nature 310:583–586PubMedCrossRefGoogle Scholar
  24. 24.
    Srivastava SK, Lacal JC, Reynolds SH et al (1985) Antibody of predetermined specificity to a carboxy-terminal region of H-ras gene products inhibits their guanine nucleotide-binding function. Mol Cell Biol 5:3316–3319PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bernards A, Settleman J (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14:377–385PubMedCrossRefGoogle Scholar
  26. 26.
    Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309PubMedCrossRefGoogle Scholar
  27. 27.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609PubMedCrossRefGoogle Scholar
  29. 29.
    Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69PubMedCrossRefGoogle Scholar
  30. 30.
    West M, Kung HF, Kamata T (1990) A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEBS Lett 259:245–248PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto T, Kaibuchi K, Mizuno T et al (1990) Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J Biol Chem 265:16626–16634PubMedGoogle Scholar
  32. 32.
    Downward J, Riehl R, Wu L et al (1990) Identification of a nucleotide exchange-promoting activity for p21ra. Proc Natl Acad Sci U S A 87:5998–6002PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Burstein ES, Macara IG (1992) Characterization of a guanine nucleotide-releasing factor and a GTPase-activating protein that are specific for the ras-related protein p25rab3A. Proc Natl Acad Sci U S A 89: 1154–1158PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  35. 35.
    Seabra MC, Wasmeier C (2004) Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 16:451–457PubMedCrossRefGoogle Scholar
  36. 36.
    Saraogi I, Akopian D, Shan SO (2011) A tale of two GTPases in cotranslational protein targeting. Protein Sci 20:1790–1795PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ferro E, Trabalzini L (2010) RalGDS family members couple Ras to Ral signalling and that’s not all. Cell Signal 22:1804–1810PubMedCrossRefGoogle Scholar
  38. 38.
    Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465PubMedCrossRefGoogle Scholar
  39. 39.
    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Casey PJ (1992) Biochemistry of protein prenylation. J Lipid Res 33:1731–1740PubMedGoogle Scholar
  41. 41.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  42. 42.
    Kelley GG, Reks SE, Ondrako JM et al (2001) Phospholipase C(epsilon): a novel Ras effector. EMBO J 20:743–754PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Peterson SN, Trabalzini L, Brtva TR et al (1996) Identification of a novel RalGDS-related protein as a candidate effector for Ras and Rap1. J Biol Chem 271:29903–29908PubMedCrossRefGoogle Scholar
  44. 44.
    Cox AD, Hisaka MM, Buss JE et al (1992) Specific Isoprenoid Modification Is Required for Function of Normal, but Not Oncogenic Ras Protein. Mol Cell Biol 12:2606–2615PubMedPubMedCentralGoogle Scholar
  45. 45.
    Mochizuki N, Yamashita S, Kurokawa K et al (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068PubMedCrossRefGoogle Scholar
  46. 46.
    Retta SF, Balzac F, Avolio M (2006) Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 85:283–293PubMedCrossRefGoogle Scholar
  47. 47.
    Balzac F, Avolio M, Degani S et al (2005) E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 118:4765–4783PubMedCrossRefGoogle Scholar
  48. 48.
    Campbell SL, Khosravi-Far R, Rossman KL et al (1998) Increasing complexity of Ras signaling. Oncogene 17:1395–1413PubMedCrossRefGoogle Scholar
  49. 49.
    Cai W, Shi GX, Andres DA (2013) Putting the Rit in cellular resistance: Rit, p38 MAPK and oxidative stress. Commun Integr Biol 6:e22297PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Shi GX, Cai W, Andres DA (2013) Rit subfamily small GTPases: regulators in neuronal differentiation and survival. Cell Signal 25: 2060–2068PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sahai E, Marshall CJ (2002) Rho-GTPases and cancer. Nat Rev Cancer 2:133–142PubMedCrossRefGoogle Scholar
  52. 52.
    Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40PubMedCrossRefGoogle Scholar
  53. 53.
    Ridley AJ (2012) Historical overview of Rho GTPases. Methods Mol Biol 827:3–12PubMedCrossRefGoogle Scholar
  54. 54.
    Didsbury J, Weber RF, Bokoch GM et al (1989) Rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382PubMedGoogle Scholar
  55. 55.
    Munemitsu S, Innis MA, Clark R et al (1990) Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42. Mol Cell Biol 10: 5977–5982PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ridley A (2013) GTPase switch: Ras then Rho and Rac. Nat Cell Biol 15:337PubMedCrossRefGoogle Scholar
  57. 57.
    Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399PubMedCrossRefGoogle Scholar
  58. 58.
    Ridley AJ, Hall A (2004) Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell 116:S23–5, 2 p following S25PubMedCrossRefGoogle Scholar
  59. 59.
    Ridley AJ, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRefGoogle Scholar
  60. 60.
    Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62PubMedCrossRefGoogle Scholar
  61. 61.
    Gonzalez-Ramos M, Mora I, de Frutos S et al (2012) Intracellular redox equilibrium is essential for the constitutive expression of AP-1 dependent genes in resting cells: studies on TGF-beta1 regulation. Int J Biochem Cell Biol 44:963–971PubMedCrossRefGoogle Scholar
  62. 62.
    Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57:283–295PubMedCrossRefGoogle Scholar
  63. 63.
    Pinkus R, Weiner LM, Daniel V (1996) Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem 271:13422–13429PubMedCrossRefGoogle Scholar
  64. 64.
    Liu M, Bi F, Zhou X et al (2012) Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol 22:365–373PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gallegos ME, Balakrishnan S, Chandramouli P et al (2012) The C. elegans rab family: identification, classification and toolkit construction. PLoS One 7:e49387PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pasqualato S, Renault L, Cherfils J (2002) Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep 3:1035–1041PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208PubMedCrossRefGoogle Scholar
  68. 68.
    Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451PubMedCrossRefGoogle Scholar
  69. 69.
    Yudin D, Fainzilber M (2009) Ran on tracks—cytoplasmic roles for a nuclear regulator. J Cell Sci 122:587–593PubMedCrossRefGoogle Scholar
  70. 70.
    Guttler T, Gorlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30:3457–3474PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gibbs JB, Schaber MD, Marshall MS et al (1987) Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J Biol Chem 262:10426–10429PubMedGoogle Scholar
  72. 72.
    Satoh T, Kaziro Y (1995) Measurement of Ras-bound guanine nucleotide in stimulated hematopoietic cells. Methods Enzymol 255:149–155PubMedCrossRefGoogle Scholar
  73. 73.
    Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270:2901–2905PubMedCrossRefGoogle Scholar
  74. 74.
    Benard V, Bohl BP, Bokoch GM (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204PubMedCrossRefGoogle Scholar
  75. 75.
    Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18:578–585PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Suryavanshi N, Ridley AJ (2013) Determining Rho GTPase Activity by an Affinity-Precipitation Assay. Methods Mol Biol 1046:191–202PubMedCrossRefGoogle Scholar
  77. 77.
    Garcia-Mata R, Wennerberg K, Arthur WT et al (2006) Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol 406:425–437PubMedCrossRefGoogle Scholar
  78. 78.
    Serebriiskii I, Khazak V, Golemis EA (1999) A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem 274:17080–17087PubMedCrossRefGoogle Scholar
  79. 79.
    Han L, Colicelli J (1995) A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol Cell Biol 15:1318–1323PubMedPubMedCentralGoogle Scholar
  80. 80.
    Van Aelst L, Barr M, Marcus S et al (1993) Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci U S A 90:6213–6217PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    White MA, Vale T, Camonis JH et al (1996) A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 271:16439–16442PubMedCrossRefGoogle Scholar
  82. 82.
    Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305PubMedCrossRefGoogle Scholar
  83. 83.
    Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60PubMedCrossRefGoogle Scholar
  84. 84.
    Tsien RY, Miyawaki A (1998) Seeing the machinery of live cells. Science 280:1954–1955PubMedCrossRefGoogle Scholar
  85. 85.
    Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol, Chapter 14, Unit 14.11: 1–26Google Scholar
  86. 86.
    Nakamura T, Matsuda M (2009) In vivo imaging of signal transduction cascades with probes based on Forster Resonance Energy Transfer (FRET). Curr Protoc Cell Biol, Chapter 14, Unit 14.10Google Scholar
  87. 87.
    Bos JL (2001) Glowing switches. Nature 411:1006–1007PubMedCrossRefGoogle Scholar
  88. 88.
    Pertz O, Hodgson L, Klemke RL et al (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072PubMedCrossRefGoogle Scholar
  89. 89.
    Machacek M, Hodgson L, Welch C et al (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Luca Goitre
    • 1
  • Eliana Trapani
    • 1
  • Lorenza Trabalzini
    • 2
  • Saverio Francesco Retta
    • 1
  1. 1.Department of Clinical and Biological SciencesUniversity of TorinoTorinoItaly
  2. 2.Department of Biotechnology, Chemistry, and PharmacyUniversity of SienaSienaItaly

Personalised recommendations