Secondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues

Part of the Methods in Molecular Biology book series (MIMB, volume 1117)


Secondary ion mass spectrometry (SIMS) is capable of providing detailed atomic and molecular characterization of the surface chemistry of (bio)molecular samples. It is one of a range of mass spectrometry imaging techniques that combine the high sensitivity and specificity of mass spectrometry with the capability to view the distribution of analytes within solid samples. The technique is particularly suited to the detection and imaging of small molecules such as lipids and other metabolites. A limit of detection in the ppm range and spatial resolution <1 μm can be obtained. Recent progress in instrumental developments, including new cluster ion beams, the implementation of tandem mass spectrometry (MS/MS), and the application of multivariate data analysis protocols promise further advances. This chapter presents a brief overview of the technique and methodology of SIMS using exemplar studies of biological cells and tissue.

Key words

ToF-SIMS Imaging Mass spectrometry Cellular analysis Tissue analysis Molecular depth profiling 3D SIMS 



The author would like to thank Prof. J.C. Vickerman and members of our research group for their contribution. The financial support of the Engineering and Physical Sciences Research Council (EPSRC) and Biotechnology and Biological Sciences Research Council (BBSRC) is gratefully acknowledged.


  1. 1.
    Vickerman JC, Briggs D (eds) (2001) ToF-SIMS: surface analysis by mass spectrometry.. Surface Spectra, ManchesterGoogle Scholar
  2. 2.
    Benninghoven A (1973) Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf Sci 35:427–437CrossRefGoogle Scholar
  3. 3.
    Touboul D, Laprévote O, Brunelle A (2011) Micrometric molecular histology of lipids by mass spectrometry imaging. Curr Opin Chem Biol 15:725–732PubMedCrossRefGoogle Scholar
  4. 4.
    Malmberg P, Jennische E, Nilsson D et al (2011) High-resolution, imaging TOF-SIMS: novel applications in medical research. Anal Bioanal Chem 399:2711–2718PubMedCrossRefGoogle Scholar
  5. 5.
    Passarelli MK, Winograd N (2001) Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim Biophys Acta 1811:976–990CrossRefGoogle Scholar
  6. 6.
    Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110:3237–3277PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    McPail D, Dowsett M (2009) Dynamic SIMS. In: Vickerman JC, Gilmore IS (eds) Surface analysis—the principal techniques. Wiley, Chichester, pp 207–268CrossRefGoogle Scholar
  8. 8.
    Guerquin-Kern JL, Wu TD, Quintana C et al (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS spectroscopy). Biochim Biophys Acta Gen Subjects 1724:228–238CrossRefGoogle Scholar
  9. 9.
    Cheng J, Wucher A, Winograd N (2006) Molecular depth profiling with cluster ion beams. J Phys Chem B 110:8329–8336PubMedCrossRefGoogle Scholar
  10. 10.
    Mahoney CM (2010) Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrom Rev 29:247–293PubMedGoogle Scholar
  11. 11.
    Fletcher JS, Lockyer NP, Vickerman JC (2011) Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom Rev 30:142–174PubMedCrossRefGoogle Scholar
  12. 12.
    Niehuis E, Heller T, Feld H et al (1987) Design and performance of a reflectron based ToF-SIMS with electrodynamic primary ion mass separation. J Vac Sci Technol 5:1243–1246CrossRefGoogle Scholar
  13. 13.
    Carado A, Passarelli MK, Kozole J et al (2008) C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal Chem 80:7921–7929PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Fletcher JS, Rabbani S, Henderson A et al (2008) A new dynamic in mass spectral imaging of single biological cells. Anal Chem 80:9058–9064PubMedCrossRefGoogle Scholar
  15. 15.
    Smith DF, Robinson EW, Tolmachev AV et al (2011) C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83:9552–9556PubMedCrossRefGoogle Scholar
  16. 16.
    Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol 3:45–60PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chandra S, Smith DR, Morrison GH (1986) Imaging intracellular elemental distribution and ion fluxes in cultured cells with ion microscopy. J Microsc (Oxford) 144:15–37CrossRefGoogle Scholar
  18. 18.
    Goodwin RJA (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 75:4893–4911PubMedCrossRefGoogle Scholar
  19. 19.
    Kaletaş BK, VanderWiel IM, Stauber J et al (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics 9:2622–2633PubMedCrossRefGoogle Scholar
  20. 20.
    Malm J, Giannaras D, Riehle MO et al (2009) Fixation and drying protocols for the preparation of cell samples for time-of-flight secondary ion mass spectrometry analysis. Anal Chem 81:7197–7205PubMedCrossRefGoogle Scholar
  21. 21.
    Fletcher JS, Rabbani S, Henderson A et al (2011) Three‐dimensional mass spectral imaging of HeLa‐M cells—sample preparation, data interpretation and visualisation. Rapid Commun Mass Spectrom 25:925–932PubMedCrossRefGoogle Scholar
  22. 22.
    Wu L, Lu X, Kulp KS et al (2007) Imaging and differentiation of mouse embryo tissues by ToF-SIMS. Int J Mass Spectrom 260:137–145CrossRefGoogle Scholar
  23. 23.
    Wittig A, Wiemann M, Fartmann M et al (2005) Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Micros Res Tech 66:248–258CrossRefGoogle Scholar
  24. 24.
    Chandra S, Bernius MT, Morrison GH (1986) Intracellular localisation and diffusible elements in frozen-hydrated biological specimens with ion microscopy. Anal Chem 58:493–496PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson ERJ, Vickerman JC, Lockyer NP (2011) A systematic evaluation of cytospinning as a novel technique for the preparation of cells for ToF-SIMS analysis. Surf Interface Anal 43:290–293CrossRefGoogle Scholar
  26. 26.
    Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708PubMedCrossRefGoogle Scholar
  27. 27.
    Jones EA, Lockyer NP, Vickerman JC (2008) Depth profiling brain tissue sections with a 40 keV C60 + primary ion beam. Anal Chem 80:2125–2132PubMedCrossRefGoogle Scholar
  28. 28.
    Piwowar AM, Lockyer NP, Vickerman JC (2009) Salt effects on ion formation in desorption mass spectrometry: an investigation into the role of alkali chlorides on peak suppression in time-of-flight secondary ion mass spectrometry. Anal Chem 81:1040–1048PubMedCrossRefGoogle Scholar
  29. 29.
    Sjovall P, Lausmaa J, Nygren H et al (2003) Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem 75:3429–3434PubMedCrossRefGoogle Scholar
  30. 30.
    Berman ESF, Fortson SL, Checchi KD et al (2008) Preparation of single cells for imaging/profiling mass spectrometry. J Am Soc Mass Spectrom 19:1230–1236PubMedCrossRefGoogle Scholar
  31. 31.
    Delcorte A, Bertrand P (2005) Metal salts for molecular ion yield enhancement in organic secondary ion mass spectrometry: A critical assessment. Anal Chem 77:2107–2115PubMedCrossRefGoogle Scholar
  32. 32.
    Delcote A, Médard N, Bertrand P (2002) Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition. Anal Chem 74:4955–4968CrossRefGoogle Scholar
  33. 33.
    Wu KJ, Odom RW (1996) Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal Chem 68:873–882PubMedCrossRefGoogle Scholar
  34. 34.
    Maarten Altelaar AF, van Minnen J, Jiménez CR et al (2005) Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem 77:735–741CrossRefGoogle Scholar
  35. 35.
    Svara FN, Kiss A, Jaskolla TW et al (2011) High-reactivity matrices increase the sensitivity of matrix enhanced secondary ion mass spectrometry. Anal Chem 83:8308–8313PubMedCrossRefGoogle Scholar
  36. 36.
    Nygren H, Eriksson C, Malmberg P et al (2003) A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging ToF-SIMS. Coll Surf Biointerfaces 30:87–92CrossRefGoogle Scholar
  37. 37.
    Nygren H, Malmberg P (2004) Silver deposition on freeze-dried cells allows subcellular localization of cholesterol with imaging TOF-SIMS. J Microsc (Oxford) 215:156–161CrossRefGoogle Scholar
  38. 38.
    Nygren H, Malmberg P, Kriegeskotte C et al (2004) Bioimaging ToF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett 566:291–293PubMedCrossRefGoogle Scholar
  39. 39.
    Pacholski ML, Cannon DM, Ewing AG et al (1998) Static ToF-SIMS imaging of freeze-fractured, frozen-hydrated biological membranes. Rapid Commun Mass Spectrom 12:1232–1235PubMedCrossRefGoogle Scholar
  40. 40.
    Pacholski ML, Cannon DM, Ewing AG et al (1999) Imaging of exposed headgroups and tailgroups of phospholipids membranes by mass spectrometry. J Am Soc Mass Spectrom 121:4716–4717Google Scholar
  41. 41.
    Colliver TL, Brummel CL, Pacholski ML et al (1997) Atomic and molecular imaging at the single-cell level with ToF-SIMS. Anal Chem 69:2225–2231PubMedCrossRefGoogle Scholar
  42. 42.
    Roddy TP, Cannon DM Jr, Meserole CA et al (2002) Imaging of freeze-fractured cells with in-situ fluorescence and ToF-SIMS. Anal Chem 74:4011–4019PubMedCrossRefGoogle Scholar
  43. 43.
    Roddy TP, Cannon DM Jr, Ostrowski SG et al (2002) Identification of cellular sections with imaging mass spectrometry following freeze fracture. Anal Chem 74:4020–4026PubMedCrossRefGoogle Scholar
  44. 44.
    Kurczy ME, Piehowski PD, Van Bell CT et al (2010) Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc Natl Acad Sci U S A 107:2751–2756PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Lanekoff I, Kurczy ME, Hill R et al (2010) Time of flight mass spectrometry imaging of samples fractured in situ with a spring-loaded trap system. Anal Chem 82:6652–6659PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Weibel D, Wong S, Lockyer N et al (2003) A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem 75:1754–1764PubMedCrossRefGoogle Scholar
  47. 47.
    Davies N, Weibel DE, Lockyer NP et al (2003) Development and experimental application of a gold liquid metal ion source. Appl Surf Sci 203–204:223–227CrossRefGoogle Scholar
  48. 48.
    Kollmer F (2004) Cluster primary ion bombardment of organic materials. Appl Surf Sci 231–232:153–158CrossRefGoogle Scholar
  49. 49.
    Touboul D, Halgand F, Brunelle A et al (2004) Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem 76:1550–1559PubMedCrossRefGoogle Scholar
  50. 50.
    Ninomiya S, Ichiki K, Yamada H et al (2009) Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams. Rapid Commun Mass Spectrom 23:3264–3268PubMedCrossRefGoogle Scholar
  51. 51.
    Moritani K, Mukai G, Hashinokuchi M et al (2011) Energy-dependent fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam projectile. Surf Int Anal 43:241–244CrossRefGoogle Scholar
  52. 52.
    Shard AG, Havelund R, Seah MP et al (2012) Argon cluster ion beams for organic depth profiling: Results from a VAMAS interlaboratory study. Anal Chem 84:7865–7873PubMedCrossRefGoogle Scholar
  53. 53.
    Rabbani S, Barber AM, Fletcher JS et al (2011) ToF-SIMS with argon gas cluster ion beams: a comparison with C60 +. Anal Chem 83:3793–3800PubMedCrossRefGoogle Scholar
  54. 54.
    Schueler B (1992) Microscopic imaging by ToF-SIMS. Microsc Microanal Microstruct 3:119–139CrossRefGoogle Scholar
  55. 55.
    Jungmann JH, MacAleese L, Visser J et al (2011) High Dynamic range biomolecular ion microscopy with the Timepix detector. Anal Chem 83:7888–7894PubMedCrossRefGoogle Scholar
  56. 56.
    Klerk L, Lockyer N, Kharchenko A et al (2010) C60 + secondary ion microscopy using a delay line detector. Anal Chem 82:801–807PubMedCrossRefGoogle Scholar
  57. 57.
    Sjövall P, Lausmaa J, Johansson B (2004) Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76:4271–4278PubMedCrossRefGoogle Scholar
  58. 58.
    Richter K, Nygren H, Malmberg P et al (2007) Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry. Microsc Res Tech 70:640–647PubMedCrossRefGoogle Scholar
  59. 59.
    Magnusson YK, Friberg P, Sjövall P et al (2008) TOF-SIMS analysis of lipid accumulation in the skeletal muscle of ob/ob mice. Obesity (Silver Spring) 16:2745–2753CrossRefGoogle Scholar
  60. 60.
    Touboul D, Roy S, Germain DP et al (2007) MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom 260:158–165CrossRefGoogle Scholar
  61. 61.
    Tahallah N, Brunelle A, De La Porte S et al (2008) Lipid mapping in human dystrophic muscle by cluster-time-of-flight secondary ion mass spectrometry imaging. J Lipid Res 49:438–454PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Debois D, Bralet MP, Le Naour F et al (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81:2823–2831PubMedCrossRefGoogle Scholar
  63. 63.
    Brulet M, Seyer A, Edelman A et al (2010) Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res 51:3034–3045PubMedCrossRefGoogle Scholar
  64. 64.
    Fletcher JS, Lockyer NP, Vaidyanathan S et al (2007) ToF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem 79:2199–2206PubMedCrossRefGoogle Scholar
  65. 65.
    Breitenstein D, Rommel CE, Mollers R et al (2007) The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Ed 46:5332–5335CrossRefGoogle Scholar
  66. 66.
    Szakal C, Hues SM, Bennett J et al (2010) Effect of cluster ion analysis fluence on interface quality in SIMS molecular depth profiling. J Phys Chem C 114:5338–5343CrossRefGoogle Scholar
  67. 67.
    Brison J, Muramoto S, Castner DG (2010) ToF-SIMS depth profiling of organic films: a comparison between single-beam and dual-beam analysis. J Phys Chem C114:5565–5573Google Scholar
  68. 68.
    Klinkert I, McDonnell LA, Luxembourg SL et al (2007) Tools and strategies for visualization of large image data setsin high-resolution imaging mass spectrometry. Rev Sci Instrum 78:053716PubMedCrossRefGoogle Scholar
  69. 69.
    Xiong X, Xu W, Eberlin LS et al (2012) Data processing for 3D mass spectrometry imaging. J Am Soc Mass Spectrom 23:1147–1156PubMedCrossRefGoogle Scholar
  70. 70.
    Vickerman JC, Briggs D, Henderson A (2002) The static SIMS library Ver. 3. Surface Spectra Ltd, ManchesterGoogle Scholar
  71. 71.
    Park JW, Min H, Kim YP et al (2009) Multivariate analysis of ToF-SIMS data for biological applications. Surf Interface Anal 41:694–703CrossRefGoogle Scholar
  72. 72.
    Smentkowski VS, Ostrowski SG, Keenan MR (2009) A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images. Surf Interface Anal 41:88–96CrossRefGoogle Scholar
  73. 73.
    Henderson A, Fletcher JS, Vickerman JC (2009) A comparison of PCA and MAF for ToF-SIMS image interpretation. Surf Interface Anal 41:666–674CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK

Personalised recommendations