Molecular Plant Taxonomy pp 309-323

Part of the Methods in Molecular Biology book series (MIMB, volume 1115) | Cite as

Molecular Cytogenetics (FISH and Fluorochrome Banding): Resolving Species Relationships and Genome Organization

  • Sonja Siljak-Yakovlev
  • Fatima Pustahija
  • Vedrana Vicic
  • Odile Robin
Protocol

Abstract

Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH) are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most widely used FISH markers. The rDNA is organized into two distinct gene families (18S-5.8S-26S and 5S) whose number and location vary within the complex of closely related species. Therefore, they are widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at chromosomal levels.

Key words

Chromomycin Crepis DAPI Fluorescence in situ hybridization (FISH) Fluorochrome banding Hoechst Pinus rRNA genes 

References

  1. 1.
    Murata M, Heslop-Harrison JS, Motoyoushi F (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J 12(1):31–37PubMedCrossRefGoogle Scholar
  2. 2.
    Cerbah M, Kevei Z, Siljak-Yakovlev S et al (1998) rDNA organization and heterochromatin pattern in Medicago truncatula. Cytogenet Cell Genet 81:141Google Scholar
  3. 3.
    Siljak-Yakovlev S, Cerbah M, Couland J et al (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512PubMedCrossRefGoogle Scholar
  4. 4.
    Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Hered 89:312–318CrossRefGoogle Scholar
  5. 5.
    Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101: 909–918PubMedCrossRefGoogle Scholar
  6. 6.
    Zoldos V, Papes D, Cerbah M et al (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among eleven Quercus species. Theor Appl Genet 99:969–977CrossRefGoogle Scholar
  7. 7.
    Siljak-Yakovlev S, Peccenini S, Muratovic E et al (2003) Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst Evol 236:165–173CrossRefGoogle Scholar
  8. 8.
    Lim KY, Matyásek R, Lichtenstein CP et al (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  9. 9.
    Bogunic F, Siljak-Yakovlev S, Muratovic E et al (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol 13:194–200PubMedCrossRefGoogle Scholar
  10. 10.
    Bogunic F, Siljak-Yakovlev S, Muratovic E et al (2011) Molecular cytogenetics and flow cytometry reveal conserved genome organization in Pinus mugo and P. uncinata. Ann For Sci 68(1):179–187CrossRefGoogle Scholar
  11. 11.
    Hizume M, Aria M, Tanaka A (1990) Chromosome banding in the genus Pinus. III. Fluorescent banding pattern of P. luchuensis and its relationships among the Japanese diploxylon pines. Bot Mag Tokyo 103:103–111CrossRefGoogle Scholar
  12. 12.
    Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation of Pinus heldreichii and Pinus nigra. Ann For Sci 63:267–274CrossRefGoogle Scholar
  13. 13.
    Muratovic E, Robin O, Bogunic F et al (2010) Speciation of European lilies from Liriotypus section based on karyotype evolution. Taxon 59:165–175Google Scholar
  14. 14.
    Godelle B, Cartier D, Marie D et al (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626PubMedCrossRefGoogle Scholar
  15. 15.
    Sell PD (1976) Crepis. In: Tutin TG et al (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 344–357Google Scholar
  16. 16.
    Siljak-Yakovlev S, Cartier D (1986) Heterochromatin patterns in some taxa of Crepis praemorsa complex. Caryologia 39:27–32CrossRefGoogle Scholar
  17. 17.
    Cartier D, Siljak-Yakovlev S (1992) Cytogenetics study of the F1 hybrids between Crepis dinarica and Crepis froelichiana. Plant Syst Evol 182:29–34CrossRefGoogle Scholar
  18. 18.
    Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization, 2nd edn. BIOS, Oxford, UKGoogle Scholar
  19. 19.
    Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148CrossRefGoogle Scholar
  20. 20.
    Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59CrossRefGoogle Scholar
  21. 21.
    Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823PubMedCrossRefGoogle Scholar
  22. 22.
    Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14: 845–857PubMedCrossRefGoogle Scholar
  23. 23.
    Geber G, Schweizer D (1988) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106CrossRefGoogle Scholar
  24. 24.
    Conger AD, Fairchild LM (1953) A quick freeze method for making smear slides. Stain Technol 28:281–283PubMedGoogle Scholar
  25. 25.
    Schweiser D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324CrossRefGoogle Scholar
  26. 26.
    Kondo T, Hizume M (1982) Banding for the chromosomes of Cryptomeria japonica D. Don. J Jpn For Soc 64:356–358Google Scholar
  27. 27.
    Martin J, Hesemann CU (1988) Evaluation of improved Giemsa C- and fluorochrome banding techniques in rye chromosome. Heredity 6:459–467CrossRefGoogle Scholar
  28. 28.
    Heslop-Harrison LS, Schwarzacher T, Anamthawat-Jonsson K et al (1991) In situ hybridization with automated chromosome denaturation. Techniques 3:109–116Google Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Sonja Siljak-Yakovlev
    • 1
  • Fatima Pustahija
    • 1
    • 2
  • Vedrana Vicic
    • 3
  • Odile Robin
    • 1
  1. 1.Laboratory Ecology, Systematic and Evolution, UMR 8079, CNRS-UPS-AgroParisTechUniversity Paris-SudOrsayFrance
  2. 2.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  3. 3.Department of Molecular Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations