j5 DNA Assembly Design Automation

  • Nathan J. Hillson
Part of the Methods in Molecular Biology book series (MIMB, volume 1116)

Abstract

Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost–benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

Key words

DNA assembly Design automation BioCAD Combinatorial library Synthetic biology 

References

  1. 1.
    Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118. doi:10.1039/c0ib00070a CrossRefGoogle Scholar
  2. 2.
    Hillson NJ (2011) DNA assembly method standardization for synthetic biomolecular circuits and systems. In: Koeppl H, Densmore D, di Bernardo M, Setti G (eds) Design and analysis of bio-molecular circuits, 1st edn. Springer, New York, pp 295–314CrossRefGoogle Scholar
  3. 3.
    Densmore D, Hsiau TH, Kittleson JT et al (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38:2607–2616. doi:10.1093/nar/gkq165 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Anderson JC, Dueber JE, Leguia M et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1. doi:10.1186/1754-1611-4-1 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Leguia M, Brophy J, Densmore D et al (2011) Automated assembly of standard biological parts. Methods Enzymol 498:363–397. doi:10.1016/B978-0-12-385120-8.00016-4 PubMedGoogle Scholar
  7. 7.
    Beal J, Weiss R, Densmore D et al (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth Biol 1:317. doi:10.1021/sb300030d PubMedCrossRefGoogle Scholar
  8. 8.
    Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765. doi:10.1371/journal.pone.0016765 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622. doi:10.1371/journal.pone.0021622 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441. doi:10.1371/journal.pone.0006441 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Shao Z, Luo Y, Zhao H (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Biosyst 7:1056–1059. doi:10.1039/c0mb00338g PubMedCrossRefGoogle Scholar
  12. 12.
    Carothers JM, Goler JA, Juminaga D et al (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–1719. doi:10.1126/science.1212209 PubMedCrossRefGoogle Scholar
  13. 13.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950. doi:10.1038/nbt.1568 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence repeats. Proc Natl Acad Sci U S A 109:16817–16822. doi:10.1073/pnas.1205693109 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mutalik VK, Guimaraes JC, Cambray G et al (2013) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10(4):347–353. doi:10.1038/nmeth.2403
  16. 16.
    Mutalik VK, Guimaraes JC, Cambray G et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354 –360Google Scholar
  17. 17.
    Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21. doi:10.1021/Sb2000116 PubMedCrossRefGoogle Scholar
  18. 18.
    Chen J, Densmore D, Ham TS et al (2012) DeviceEditor visual biological CAD canvas. J Biol Eng 6:1. doi:10.1186/1754-1611-6-1 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ham TS, Dmytriv Z, Plahar H et al (2012) Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res 40:e141. doi:10.1093/nar/gks531 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Linshiz G, Stawski N, Poust S et al (2012) PaR-PaR laboratory automation platform. ACS Synth Biol 2:216–222. doi:10.1021/sb300075t PubMedCrossRefGoogle Scholar
  21. 21.
    Thieme F, Engler C, Kandzia R et al (2011) Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS One 6:e20556. doi:10.1371/journal.pone.0020556 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256. doi:10.1038/nmeth1010 PubMedCrossRefGoogle Scholar
  23. 23.
    You C, Zhang XZ, Zhang YH (2012) Simple cloning via direct transformation of PCR product (DNA Multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 78:1593–1595. doi:10.1128/AEM.07105-11 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251. doi:10.1038/nprot.2010.181 PubMedCrossRefGoogle Scholar
  25. 25.
    Erijman A, Dantes A, Bernheim R et al (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175:171–177. doi:10.1016/j.jsb.2011.04.005 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. doi:10.1093/nar/gkr1288 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318 PubMedCrossRefGoogle Scholar
  28. 28.
    Ramon A, Smith HO (2011) Single-step linker-based combinatorial assembly of promoter and gene cassettes for pathway engineering. Biotechnol Lett 33:549–555. doi:10.1007/s10529-010-0455-x PubMedCrossRefGoogle Scholar
  29. 29.
    Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16. doi:10.1093/nar/gkn991 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Wingler LM, Cornish VW (2011) Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci U S A 108:15135–15140. doi:10.1073/pnas.1100507108 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    j5 website. http://j5.jbei.org
  32. 32.
    Gibthon website. http://gibthon.org
  33. 33.
    Richardson SM, Liu S, Boeke JD et al (2012) Design-A-Gene with GeneDesign. Methods Mol Biol 852:235–247. doi:10.1007/978-1-61779-564-0_18 PubMedCrossRefGoogle Scholar
  34. 34.
    Richardson SM, Nunley PW, Yarrington RM et al (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:2603–2606. doi:10.1093/nar/gkq143 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    GeneDesign website. http://54.235.254.95/gd/
  36. 36.
  37. 37.
    GeneArt® Primer and Construct Design Tool website. http://bioinfo.invitrogen.com/oligoDesigner
  38. 38.
    Engler C, Gruetzner R, Kandzia R et al (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIS restriction enzymes. PLoS One 4:e5553. doi:10.1371/journal.pone.0005553 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. doi:10.1371/journal.pone.0003647 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Engler C, Marillonnet S (2011) Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 729:167–181. doi:10.1007/978-1-61779-065-2_11 PubMedCrossRefGoogle Scholar
  41. 41.
    Geertsma ER, Dutzler R (2011) A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50:3272–3278. doi:10.1021/bi200178z PubMedCrossRefGoogle Scholar
  42. 42.
    Bitinaite J, Rubino M, Varma KH et al (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992. doi:10.1093/nar/gkm041 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Annaluru N, Muller H, Ramalingam S (2012) Assembling DNA fragments by USER fusion. Methods Mol Biol 852:77–95. doi:10.1007/978-1-61779-564-0_7 PubMedCrossRefGoogle Scholar
  44. 44.
    Olsen LR, Hansen NB, Bonde MT et al (2011) PHUSER (Primer Help for USER): a novel tool for USER fusion primer design. Nucleic Acids Res 39:W61–W67. doi:10.1093/nar/gkr394 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
  46. 46.
    TeselaGen website. http://teselagen.com
  47. 47.
  48. 48.
    Public instance of the JBEI Parts Registry. http://public-registry.jbei.org
  49. 49.
  50. 50.
    PaR-PaR website. http://prpr.jbei.org
  51. 51.
    PaR-PaR source code github repository. https://github.com/jbei/prpr
  52. 52.
    Synthetic Biology Open Language visual standard. http://www.sbolstandard.org/visual
  53. 53.
  54. 54.
    Eugene website. http://eugenecad.org/
  55. 55.
    Bilitchenko L, Liu A, Cheung S et al (2011) Eugene—a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS One 6:e18882. doi:10.1371/journal.pone.0018882 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  57. 57.
  58. 58.
    j5, DeviceEditor, and VectorEditor demonstration video. http://j5.jbei.org/j5_and_DeviceEditor_Demo_Movie.mov
  59. 59.
  60. 60.
    A plasmid Editor (ApE) software. http://biologylabs.utah.edu/jorgensen/wayned/ape/
  61. 61.
  62. 62.
    Clotho website. http://clothocad.org
  63. 63.
    Xia B, Bhatia S, Bubenheim B (2011) Developer’s and user’s guide to Clotho v2.0 A software platform for the creation of synthetic biological systems. Methods Enzymol 498:97–135. doi:10.1016/B978-0-12-385120-8.00005-X PubMedGoogle Scholar
  64. 64.

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Nathan J. Hillson
    • 1
    • 2
    • 3
  1. 1.Fuels Synthesis DivisionJoint BioEnergy InstituteEmeryvilleUSA
  2. 2.DOE Joint Genome InstituteWalnut CreekUSA
  3. 3.Physical BioSciences DivisionLawrence Berkeley National LabBerkeleyUSA

Personalised recommendations