Gene Correction pp 143-161

Part of the Methods in Molecular Biology book series (MIMB, volume 1114)

Targeting piggyBac Transposon Integrations in the Human Genome

  • Daniel L. Galvan
  • Claudia S. Kettlun
  • Matthew H. Wilson
Protocol

Abstract

DNA based transposon systems offer a technology for active and efficient delivery of genes into human cells. An emerging field is directed at manipulating such systems to achieve site-directed integration as compared to un-targeted integration which occurs with native or unmodified transposon systems. The naturally active piggyBac transposon system is derived from insects but has been shown to be very efficient in gene-modifying human cells. Recent efforts have utilized the fusion of DNA binding domains to the piggyBac transposase enzyme with the goal of targeting integration to specific locations in the human genome. In this chapter, we describe methodology for engineering and characterizing chimeric piggyBac transposase enzymes, including experimental approaches for evaluating activity and targeting specificity in the human genome.

Key words

piggyBac Site-directed integration Transposon Transposase Zinc finger Human cells 

References

  1. 1.
    Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169PubMedCrossRefGoogle Scholar
  2. 2.
    Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145PubMedCrossRefGoogle Scholar
  4. 4.
    Li MA, Turner DJ, Ning Z et al (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39:e148PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nakazawa Y, Huye LE, Dotti G et al (2009) Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J Immunother 32:826–836PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151PubMedCrossRefGoogle Scholar
  7. 7.
    Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882PubMedCrossRefGoogle Scholar
  8. 8.
    Kettlun C, Galvan DL, George AL, Kaja A, Wilson MH (2011) Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 19:1636–1644PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Owens JB, Urschitz J, Stoytchev I et al (2012) Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 40:6978–6991PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wang H, Mayhew D, Chen X, Johnston M, Mitra RD (2012) “Calling cards” for DNA-binding proteins in mammalian cells. Genetics 190:941–949PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tan SY, Guschin D, Davalos A et al (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA 100:11997–12002PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson MH, Kaminski JM, George AL Jr (2005) Functional zinc finger/sleeping beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett 579:6205–6209PubMedCrossRefGoogle Scholar
  14. 14.
    Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15:1137–1144PubMedGoogle Scholar
  15. 15.
    Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wu SC, Meir YJ, Coates CJ et al (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH (2012) Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther 23:311–320PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Geurts AM, Yang Y, Clark KJ et al (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8:108–117PubMedCrossRefGoogle Scholar
  21. 21.
    Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther 9:292–304PubMedCrossRefGoogle Scholar
  22. 22.
    Wang W, Lin C, Lu D et al (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105:9290–9295PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Daniel L. Galvan
    • 1
  • Claudia S. Kettlun
    • 1
  • Matthew H. Wilson
    • 2
  1. 1.Department of MedicineBaylor College of MedicineHoustonUSA
  2. 2.Department of Medicine and Center for Cell and Gene TherapyBaylor College of Medicine and Michael E. DeBakey VA Medical CenterHoustonUSA

Personalised recommendations