RNA-Guided Genome Editing of Mammalian Cells

  • Neena K. Pyzocha
  • F. Ann Ran
  • Patrick D. Hsu
  • Feng Zhang
Part of the Methods in Molecular Biology book series (MIMB, volume 1114)


The microbial CRISPR-Cas adaptive immune system can be harnessed to facilitate genome editing in eukaryotic cells (Cong L et al., Science 339, 819–823, 2013; Mali P et al., Science 339, 823–826, 2013). Here we describe a protocol for the use of the RNA-guided Cas9 nuclease from the Streptococcus pyogenes type II CRISPR system to achieve specific, scalable, and cost-efficient genome editing in mammalian cells.

Key words

CRISPR-Cas Genome editing DNA cleavage Cas9 Guide RNA PAM sequence NHEJ Gene knockout 



We thank Randall Platt for comments and members of the Zhang Lab for discussion, support, and advice. N.P. is supported by the National Science Foundation Graduate Research Fellowship, Primary Award #1122374. P.D.H. is a James Mills Pierce Fellow. F.Z. is supported by the NIH Transformative R01 Award (R01-NS073124); the NIH Director’s Pioneer Award (DP1-MH100706); the Keck, McKnight, Gates, Damon Runyon, Searle Scholars, Merkin, Klingenstein, and Simons Foundations; Bob Metcalfe; Mike Boylan; and Jane Pauley. Sequence and reagent information are available through


  1. 1.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Urnov FD et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedCrossRefGoogle Scholar
  4. 4.
    Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763PubMedCrossRefGoogle Scholar
  5. 5.
    Miller JC et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785PubMedCrossRefGoogle Scholar
  6. 6.
    Christian M et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Miller JC et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148PubMedCrossRefGoogle Scholar
  8. 8.
    Sanjana NE et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95PubMedCrossRefGoogle Scholar
  10. 10.
    Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91:6064–6068PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hockemeyer D et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cui X et al (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67PubMedCrossRefGoogle Scholar
  13. 13.
    Ding Q et al (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Maier D et al (2013) Efficient clinical scale gene modification via zinc finger nuclease targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24:245–258PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493PubMedCrossRefGoogle Scholar
  16. 16.
    Garneau JE et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71PubMedCrossRefGoogle Scholar
  17. 17.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170PubMedCrossRefGoogle Scholar
  18. 18.
    Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  19. 19.
    Deltcheva E et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jore MM et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529–536PubMedCrossRefGoogle Scholar
  21. 21.
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740PubMedCrossRefGoogle Scholar
  22. 22.
    Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gray SJ et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Neena K. Pyzocha
    • 1
    • 2
  • F. Ann Ran
    • 3
  • Patrick D. Hsu
    • 1
  • Feng Zhang
    • 4
    • 5
    • 6
    • 7
  1. 1.Broad Institute of MIT and Harvard, Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Broad Institute of MIT and Harvard, Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Broad Institute of MIT and HarvardCambridgeUSA
  5. 5.McGovern Institute for Brain ResearchMITCambridgeUSA
  6. 6.Department of Brain and Cognitive SciencesMITCambridgeUSA
  7. 7.Department of Biological EngineeringMITCambridgeUSA

Personalised recommendations