Artificial Riboswitch Selection: A FACS-Based Approach

  • Zohaib Ghazi
  • Casey C. Fowler
  • Yingfu Li
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1111)

Abstract

Riboswitches have a number of characteristics that make them ideal regulatory elements for a wide range of synthetic biology applications. To maximize their utility, methods are required to create custom riboswitches de novo or to modify existing riboswitches to suit specific experimental needs. This chapter describes such a method, which exploits fluorescence-activated cell sorting (FACS) to quickly and efficiently sort through large libraries of riboswitch-like sequences to identify those with the desired activity. Suggestions for the experimental setup are provided, along with detailed protocols for testing and optimizing FACS conditions FACS selection steps, and follow-up assays to identify and characterize individual riboswitches.

Key words

Artificial riboswitch Aptamer Biosensor Fluorescence-activated cell sorting (FACS) High-throughput Enrichment 

References

  1. 1.
    Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334PubMedCrossRefGoogle Scholar
  2. 2.
    Fowler CC, Brown ED, Li Y (2010) Using a riboswitch sensor to examine coenzyme B(12) metabolism and transport in E. coli. Chem Biol 17:756–765PubMedCrossRefGoogle Scholar
  3. 3.
    Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24: 1558–1564PubMedCrossRefGoogle Scholar
  5. 5.
    Sudarsan N, Hammond MC, Block KF et al (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304PubMedCrossRefGoogle Scholar
  6. 6.
    Jin Y, Watt RM, Danchin A, Huang J (2009) Use of a riboswitch-controlled conditional hypomorphic mutation to uncover a role for the essential csrA gene in bacterial autoaggregation. J Biol Chem 284:28738–28745PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Djordjevic M (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24: 179–189PubMedCrossRefGoogle Scholar
  8. 8.
    Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403PubMedCrossRefGoogle Scholar
  9. 9.
    Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9:1906–1911PubMedCrossRefGoogle Scholar
  10. 10.
    Lynch SA, Gallivan JP (2009) A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res 37:184–192PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Lynch SA, Desai SK, Sajja HK et al (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14:173–184PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Topp S, Gallivan JP (2008) Random walks to synthetic riboswitches—a high-throughput selection based on cell motility. ChemBioChem 9:210–213PubMedCrossRefGoogle Scholar
  13. 13.
    Muranaka N, Abe K, Yokobayashi Y (2009) Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches. ChemBioChem 10:2375–2381PubMedCrossRefGoogle Scholar
  14. 14.
    Shapiro HM (2003) Practical flow cytometry, 4th edition. Wiley-Liss, New York, NYGoogle Scholar
  15. 15.
    Macey MG (2007) Flow cytometry: principles and applications. Humana Press, Totowa, NJCrossRefGoogle Scholar
  16. 16.
    Wickiser JK, Winkler WC, Breaker RR et al (2005) The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 18:49–60PubMedCrossRefGoogle Scholar
  17. 17.
    Wickiser JK, Cheah MT, Breaker RR et al (2005) The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44: 13404–13414PubMedCrossRefGoogle Scholar
  18. 18.
    Gilbert SD, Stoddard CD, Wise SJ et al (2006) Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 359: 754–768PubMedCrossRefGoogle Scholar
  19. 19.
    Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19: 1413–1423PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wachsmuth M, Findeiß S, Weissheimer N et al (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed 47:2604–2607CrossRefGoogle Scholar
  24. 24.
    Ogawa A, Maeda M (2007) Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Bioorg Med Chem Lett 17:3156–3160PubMedCrossRefGoogle Scholar
  25. 25.
    Beisel CL, Smolke CD (2009) Design principles for riboswitch function. PLoS Comput Biol 5:e1000363PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67PubMedCrossRefGoogle Scholar
  27. 27.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedCrossRefGoogle Scholar
  28. 28.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  29. 29.
    Telford WG, Hawley T, Subach F et al (2012) Flow cytometry of fluorescent proteins. Methods 57:318–330PubMedCrossRefGoogle Scholar
  30. 30.
    Chudakov D, Matz M, Lukyanov S et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zohaib Ghazi
    • 1
    • 2
    • 3
  • Casey C. Fowler
    • 1
    • 2
    • 3
  • Yingfu Li
    • 1
    • 2
    • 3
  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  3. 3.Michael G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations