Artificial Riboswitches pp 237-249

Part of the Methods in Molecular Biology book series (MIMB, volume 1111) | Cite as

In Vivo Screening for Aptazyme-Based Bacterial Riboswitches

  • Charlotte Rehm
  • Jörg S. Hartig

Abstract

In many synthetic biology applications, modular and easily accessible tools for controlling gene expression are required. In addition, in vivo biosensors and diagnostic devices will become more important in the future to allow for noninvasive determination of protein, ion, or small molecule metabolite levels. In recent years synthetic RNA-based switches have been developed to act as signal transducers to convert a binding event of a small molecule (input) into a detectable output. Their modular design allows the development of a variety of molecular switches to be used in biochemical assays or inside living cells. RNA switches developed by our group are based on the Schistosoma mansoni hammerhead ribozyme, a self-cleaving RNA sequence that can be inserted into any RNA of interest. Connection to an aptamer sensing a small molecule renders the cleavage reaction ligand-dependent. In the past we have successfully designed and applied such hammerhead aptazymes for the allosteric control of both bacterial and eukaryotic gene expression by affecting transcription elongation, translation initiation, or mRNA stability. In order to yield functional switches optimization of the connecting sequence between the aptamer and the HHR needs to be carried out. We have therefore developed an in vivo screening protocol detailed in this chapter that allows the identification of functional aptazymes in bacteria.

Key words

Riboswitch Allosteric ribozyme Biosensor Hammerhead aptazyme In vivo screening Aptamer Gene expression Regulation 

References

  1. 1.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  3. 3.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956PubMedCrossRefGoogle Scholar
  5. 5.
    Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707PubMedCrossRefGoogle Scholar
  6. 6.
    Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586PubMedCrossRefGoogle Scholar
  7. 7.
    Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7:519–527PubMedCrossRefGoogle Scholar
  8. 8.
    Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39PubMedCrossRefGoogle Scholar
  10. 10.
    Blount KF, Uhlenbeck OC (2002) The hammerhead ribozyme. Biochem Soc Trans 30:1119–1122PubMedCrossRefGoogle Scholar
  11. 11.
    Fedor MJ (2009) Comparative enzymology and structural biology of RNA self-cleavage. Annu Rev Biophys 38:271–299PubMedCrossRefGoogle Scholar
  12. 12.
    Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712PubMedCrossRefGoogle Scholar
  13. 13.
    Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459PubMedCrossRefGoogle Scholar
  14. 14.
    Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem 47:2604–2607CrossRefGoogle Scholar
  15. 15.
    Wieland M, Benz A, Klauser B, Hartig JS (2009) Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem 48:2715–2718CrossRefGoogle Scholar
  16. 16.
    Ogawa A, Maeda M (2008) An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem 9:206–209PubMedCrossRefGoogle Scholar
  17. 17.
    Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wieland M, Gfell M, Hartig JS (2009) Expanded hammerhead ribozymes containing addressable three-way junctions. RNA 15:968–976PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Klauser B, Saragliadis A, Auslander S, Wieland M, Berthold MR, Hartig JS (2012) Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation. Mol BioSyst 8:2242–2248PubMedCrossRefGoogle Scholar
  21. 21.
    Auslander S, Ketzer P, Hartig JS (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol BioSyst 6:807–814PubMedCrossRefGoogle Scholar
  22. 22.
    Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM (2012) Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 40:e167PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Berschneider B, Wieland M, Rubini M, Hartig JS (2009) Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem 48:7564–7567CrossRefGoogle Scholar
  24. 24.
    Wieland M, Berschneider B, Erlacher MD, Hartig JS (2010) Aptazyme-mediated regulation of 16S ribosomal RNA. Chem Biol 17:236–242PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar D, Annna CI, Yokobayashi Y (2009) Conditional RNA interference mediated by allosteric ribozyme. J Am Chem Soc 131:13906–13907PubMedCrossRefGoogle Scholar
  26. 26.
    Saragliadis A, Krajewski SS, Rehm C, Narberhaus F, Hartig JS (2013) Thermozymes: Synthetic RNA thermometers based on ribozyme activity. RNA Biol 10(6):1010–6PubMedCrossRefGoogle Scholar
  27. 27.
    Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–52PubMedCrossRefGoogle Scholar
  28. 28.
    Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A 96:3584–3589PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9:1797–1804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Charlotte Rehm
    • 1
  • Jörg S. Hartig
    • 1
  1. 1.Department of ChemistryUniversity of KonstanzKonstanzGermany

Personalised recommendations